• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 27, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 27, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Variance-based features for keyword extraction in Persian and English text documents

    (ندگان)پدیدآور
    Veisi, HadiAflaki, NiloofarParsafard, Pouyan
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    5.695 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    This paper address automatic keyword extraction in Persian and English text documents. Generally, for keyword extraction in a text, a weight is assigned to each token and words having higher weights are selected as the keywords. We have proposed four methods for weighting the words and have compared these methods with five previous weighting techniques. The previous methods used in this paper are term frequency (TF), term frequency inverse document frequency (TF-IDF), variance, discriminative feature selection (DFS), and document length normalization based on unit words (LNU). The proposed weighting methods are based on using variance features and include variance to TF-IDF ratio, variance to TF ratio, the intersection of TF and variance, and the intersection of variance and IDF. For evaluation, the documents are clustered using the extracted keywords as feature vectors, and K-means, expectation maximization (EM), and Ward hierarchical clustering methods. The entropy of the clusters and pre-defined classes of the documents are used as the evaluation metric. For the evaluations, we have collected and labelled Persian documents. Results show that our proposed weighting method, variance to TF ratio, has the best performance for Persian. Also, the best entropy is resulted by variance to TD-IDF ratio for English.
    کلید واژگان
    Keyword Extraction
    Term Frequency
    Variance
    Clustering
    Persian Text Processing

    شماره نشریه
    3
    تاریخ نشر
    2020-06-01
    1399-03-12
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    Faculty of New Sciences and Technologies (FNST), University of Tehran, Tehran, Iran
    Kish International Campus, University of Tehran, Kish, Iran
    Kish International Campus, University of Tehran, Kish, Iran

    شاپا
    1026-3098
    2345-3605
    URI
    https://dx.doi.org/10.24200/sci.2019.50426.1685
    http://scientiairanica.sharif.edu/article_21440.html
    https://iranjournals.nlai.ir/handle/123456789/118971

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب