• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 26, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 26, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A COMBINATION OF COMPUTATIONAL FLUID DYNAMICS, ARTIFICIAL NEURAL NETWORK AND SUPPORT VECTORS MACHINES MODEL TO PREDICT FLOW VARIABLES IN CURVED CHANNEL

    (ندگان)پدیدآور
    Gholami, AzadehBonakdari, HosseinAkhtari, Ali AkbarEbtehaj, Isa
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    5.509 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    This study show the combination of computational fluid dynamics (CFD) and soft computing techniques to make viewpoint for two-phase flow modelling and accuracy evaluation of soft computing methods in the three-dimensional flow variables prediction in curved channels. Therefore, artificial neural network (ANN) and support vectors machines (SVM) models with CFD is designed to estimate velocity and flow depth variable in 60° sharp bend. Experimental results in 6 different flow discharges of 5, 7.8, 13.6, 19.1, 25.3 and 30.8 l/s to train and test, ANN and SVM models is used. The results of numerical models with experimental values are compared and the models accuracy is confirmed. The results evaluation show that all three models ANN, SVM and CFD perform well in flow velocity prediction, with correlation coefficient (R) of 0.952, o.806, and 0.680, and flow depth (R) of 0.999, 0.696, and 0.614 respectively. ANN model to predict both velocity and flow depth variables with mean absolute relative error (MARE) of 0.055 and 0.004 is the best model. Then SVM and CFD models with MARE of 0.069 and 0.089 in velocity prediction and in flow depth prediction CFD and SVM models with MARE of 0.007 and 0.011 are the best models, respectively.
    کلید واژگان
    ANN
    SVM
    CFD
    Velocity
    Flow Depth
    60° bend
    Civil Engineering

    شماره نشریه
    2
    تاریخ نشر
    2019-04-01
    1398-01-12
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    Department of Civil Engineering, Razi University, Kermanshah, Iran
    Department of Civil Engineering, Razi University, Kermanshah, Iran
    Department of Civil Engineering, Razi University, Kermanshah, Iran
    Department of Civil Engineering, Razi University, Kermanshah, Iran

    شاپا
    1026-3098
    2345-3605
    URI
    https://dx.doi.org/10.24200/sci.2017.4520
    http://scientiairanica.sharif.edu/article_4520.html
    https://iranjournals.nlai.ir/handle/123456789/118556

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب