• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 26, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 26, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of predictive models for shear strength of HSC slender beams without web reinforcement using machine-learning based techniques

    (ندگان)پدیدآور
    Kaveh, A.Bakhshpoori, T.Hamze-Ziabari, S. M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    2.798 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Shear failure of slender beams made of high strength concrete (HSC) is one of the most crucial failures in design of reinforced concrete members. The accuracy of the existing design codes for HSC unlike the normal strength concrete (NSC) beams seems to be limited in prediction of shear capacity. This paper proposes a new set of shear strength models for HSC slender beams without web reinforcement using conventional multiple linear regression, advanced machine learning methods of multivariate adaptive regression splines (MARS) and group method of data handling (GMDH) network. In order to achieve high-fidelity and robust regression models, this study employs a comprehensive database including 250 experimental tests. Various influencing parameters including the longitudinal steel ratio, shear span-to-depth ratio, compressive strength of concrete, size of the beam specimens, and size of coarse aggregate are considered. The results indicate that the MARS approach has the best estimation in terms of both accuracy and safety aspects in comparison with regression methods and GMDH approach. Moreover, the accuracy and safety of predictions of MARS model is also remarkably more than the most common design equations. Furthermore, the robustness of proposed models is confirmed through sensitivity and parametric analyses.
    کلید واژگان
    High strength concrete (HSC)
    Slender beams
    shear strength
    Machine learning
    GMDH
    MARS
    Civil Engineering

    شماره نشریه
    2
    تاریخ نشر
    2019-04-01
    1398-01-12
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    Centre of Excellence for Fundamental Studies in Structural Engineering, Iran University of ‎Science and Technology, Narmak, Tehran, P.O. Box 16846-13114, Iran‎
    Faculty of Technology and Engineering, Department of Civil Engineering, East of Guilan, University of Guilan, Rudsar-Vajargah, Iran
    School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, P.O. Box 16846-13114, Iran

    شاپا
    1026-3098
    2345-3605
    URI
    https://dx.doi.org/10.24200/sci.2017.4509
    http://scientiairanica.sharif.edu/article_4509.html
    https://iranjournals.nlai.ir/handle/123456789/118555

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب