• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 22, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 22, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Daily Discharge Forecasting Using Least Square Support Vector Regression and Regression Tree

    (ندگان)پدیدآور
    Sahraei, Sh.Zare Andalani, S.Zakermoshfegh, M.Nikeghbal Sisakht, B.Talebbeydokhti, N.Moradkhani, H.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    3.842 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Prediction of river flow is one of the main issues in the field of water resources management. Because of the complexity of the rainfall-runoff process, data-driven methods have gained increased importance. In the current study, two newly developed models called Least Square Support Vector Regression (LSSVR) and Regression Tree (RT) are used. The LSSVR model is based on the constrained optimization method and applies structural risk minimization in order to yield a general optimized result. Also in the RT, data movement is based on laws discovered in the tree. Both models have been applied to the data in the Kashkan watershed. Variables include (a) recorded precipitation values in the Kashkan watershed stations, and (b) outlet discharge values of one and two previous days. Present discharge is considered as output of the two models. Following that, a sensitivity analysis has been carried out on the input features and less important features has been diminished so that both models have provided better prediction on the data. The final results of both models have been compared. It was found that the LSSVR model has better performance. Finally, the results present these models as a suitable models in river flow forecasting.
    کلید واژگان
    Streamflow forecast
    Artificial intelligence
    support vector regression (SVR)
    Regression tree (RT)
    Kashkan watershed

    شماره نشریه
    2
    تاریخ نشر
    2015-04-01
    1394-01-12
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    Civil and Environmental Engineering Department, School of Engineering, Shiraz University, Shiraz, Iran
    School of Civil Engineering, College of Engineering, Tehran University, Tehran, Iran
    Civil Engineering Department, Director of Research and Technology Affairs, Jundi-Shapur University of Technology, Dezful, Iran
    Civil and Environmental Engineering Department, School of Engineering, Shiraz University, Shiraz, Iran
    Civil and Environmental Engineering Department, Environmental Research and Sustainable Development Center, Shiraz University, Shiraz, Iran
    Civil and Environmental Engineering Department, Portland State University, Portland, OR., USA

    شاپا
    1026-3098
    2345-3605
    URI
    http://scientiairanica.sharif.edu/article_1875.html
    https://iranjournals.nlai.ir/handle/123456789/118367

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب