• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 24, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 24, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Simultaneous Optimization of Joint Edge Geometry and Process Parameters in Gas Metal Arc Welding Using Integrated ANN - PSO Approach

    (ندگان)پدیدآور
    Azadi Moghaddam, M.Golmezerji, R.Kolahan, F.
    Thumbnail
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Gas metal arc welding (GMAW) can be considered the most extensively used process in automated welding due to its high productivity. However, to simultaneously achieve several conflicting objectives such as reducing production time, increasing product quality, full penetration, proper joint edge geometry and optimal selection of process parameters a multi criteria optimization procedure must be used. The aim of this research is to develop a multi criteria modeling and optimization procedure for GMAW process. To simultaneously predict weld bead geometry (WBG) characteristics and heat affected zone (HAZ), a back propagation neural network (BPNN) has been proposed. The experimentally derived data sets are used in training and testing of the network. Results demonstrated that the finely tuned BPNN model can closely simulate actual GMAW process with less than 1% error. Next, to simultaneously optimize process characteristics the BPNN model is inserted into a particle swarm optimization (PSO) algorithm. The proposed technique determines a set of parameters values and the work piece groove angle in such a way that a pre specified WBG is achieved while the HAZ of the weld joint is minimized. Optimal results were verified through additional experiments.
    کلید واژگان
    Gas Metal Arc Welding (GMAW)
    Joint Edge Geometry
    Heat Affected Zone (HAZ)
    Multi-Criteria Optimization
    artificial neural network (ANN)
    Particle swarm optimization (PSO) algorithm

    شماره نشریه
    1
    تاریخ نشر
    2017-02-01
    1395-11-13
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    Ferdowsi University of Mashhad, Department of Mechanical Engineering, Mashhad, Iran
    Ferdowsi University of Mashhad, Department of Mechanical Engineering, Mashhad, Iran
    Ferdowsi University of Mashhad, Department of Mechanical Engineering, Mashhad, Iran

    شاپا
    1026-3098
    2345-3605
    URI
    https://dx.doi.org/10.24200/sci.2017.4031
    http://scientiairanica.sharif.edu/article_4031.html
    https://iranjournals.nlai.ir/handle/123456789/118291

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب