• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 26, Special Issue on: Socio-Cognitive Engineering
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 26, Special Issue on: Socio-Cognitive Engineering
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An efficient hardware implementation for a motor imagery brain computer interface system

    (ندگان)پدیدآور
    Malekmohammadi, AlirezaMohammadzade, HodaChamanzar, AlirezaShabany, MahdiGhojogh, Benyamin
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    4.718 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Brain Computer Interface (BCI) systems, which are based on motor imagery, enable human to command artificial peripherals by merely thinking to the task. There is a tremendous interest in implementing BCIs on portable platforms, such as Field Programmable Gate Arrays (FPGAs) due to their low-cost, low-power and portability characteristics. This article presents the design and implementation of a Brain Computer Interface (BCI) system based on motor imagery on a Virtex-6 FPGA. In order to design an accurate algorithm, the proposed method avails statistical learning methods such as Mutual Information (MI), Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM). It also uses Separable Common Spatio Spectral Pattern (SCSSP) method in order to extract features. Simulation results prove achieved performances of 73.54% for BCI Competition III-dataset V, 67.2% for BCI Competition IV-dataset 2a with all four classes, 80.55% for BCI Competition IV-dataset 2a with the first two classes, and 81.9% for captured signals. Moreover, the final reported hardware resources determine its efficiency as a result of using retiming and folding techniques from the VLSI architecture perspective. The complete proposed BCI system not only achieves excellent recognition accuracy but also remarkable implementation efficiency in terms of portability, power, time, and cost.
    کلید واژگان
    Brain Computer Interface (BCI)
    Electroencephalograph (EEG)
    Motor Imagery
    Field Programmable Gate Arrays (FPGA)
    Separable Common Spatio Spectral Pattern (SCSSP)
    Support Vector Machine (SVM)
    Linear Discriminant Analysis (LDA)

    تاریخ نشر
    2019-02-01
    1397-11-12
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
    Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
    Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
    Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
    Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran

    شاپا
    1026-3098
    2345-3605
    URI
    https://dx.doi.org/10.24200/sci.2018.4978.1022
    http://scientiairanica.sharif.edu/article_20830.html
    https://iranjournals.nlai.ir/handle/123456789/118239

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب