On Approximate Solutions of the Generalized Radical Cubic Functional Equation in Quasi-$beta$-Banach Spaces
(ندگان)پدیدآور
Kaskasem, ProndanaiJanchada, AekarachKlin-eam, Chakkridنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the generalized radical cubic functional equation[ fleft( sqrt[3]{ax^3 + by^3}right)=af(x) + bf(y),] where $a,b in mathbb{R}_+$ are fixed positive real numbers, by using direct method in quasi-$beta$-Banach spaces. Moreover, we use subadditive functions to investigate stability of the generalized radical cubic functional equations in $(beta,p)$-Banach spaces.
کلید واژگان
Hyers-Ulam-Rassias stabilityradical cubic functional equation
quasi-$beta$-normed spaces
subadditive function
شماره نشریه
1تاریخ نشر
2020-01-011398-10-11
ناشر
University of Maraghehسازمان پدید آورنده
Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.
Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand and Research center for Academic Excellence in Mathematics, Naresuan University, Phitsanulok, 65000, Thailand.
شاپا
2322-58072423-3900




