On Character Space of the Algebra of BSE-functions
(ندگان)پدیدآور
Fozouni, Mohammadنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Suppose that $A$ is a semi-simple and commutative Banach algebra. In this paper we try to characterize the character space of the Banach algebra $C_{rm{BSE}}(Delta(A))$ consisting of all  BSE-functions on $Delta(A)$ where $Delta(A)$ denotes the character space of $A$. Indeed, in the case that $A=C_0(X)$ where $X$ is a non-empty locally compact Hausdroff space, we give a complete characterization of $Delta(C_{rm{BSE}}(Delta(A)))$ and in the general case we give a partial answer.  Also, using the Fourier algebra, we show that $C_{rm{BSE}}(Delta(A))$ is not a $C^*$-algebra in general. Finally for some subsets $E$ of $A^*$, we define the subspace of BSE-like functions on $Delta(A)cup E$ and give a nice application of this space related to Goldstine's theorem.
کلید واژگان
Banach algebraBSE-function
Character space
Locally compact group
Banach Algebra
شماره نشریه
1تاریخ نشر
2018-11-011397-08-10
ناشر
University of Maraghehسازمان پدید آورنده
Department of Mathematics and Statistics, Faculty of Basic Sciences and Engineering, Gonbad Kavous University, P.O.Box 163, Gonbad Kavous, Iran.شاپا
2322-58072423-3900




