• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Rehabilitation in Civil Engineering
    • Volume 13, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Rehabilitation in Civil Engineering
    • Volume 13, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    M5 Soft Computing Techniques for Assessment of Soil Liquefaction

    (ندگان)پدیدآور
    Sayed, AbuRahman, Md
    Thumbnail
    نوع مدرک
    Text
    Regular Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    It is essential to precisely estimate the liquefaction potential because soil liquefaction is a factor that raises the quantity and intensity of losses in an earthquake. In the past, the prediction of soil liquefaction was based on multiple analytical inferences. The purpose of this research is to develop an M5 model for both classification and regression in order to investigate the suitability of the M5 decision tree for liquefaction assessment. Additionally, the divisional approaches of fuzzy clustering means (FCM), kfold clustering, and grid search cross-validation (Gridsearch CV) are investigated in order to create effective regression and classification models. In this work, specific models are developed using a data set of 200 boreholes from standard penetration tests on soils in the Dinajpur region. The efficacy of the constructed models is assessed using several performance measures, such as root mean squared error (RMSE), mean absolute error (MAE), and coefficient of correlation (R) for regression models, and accuracy, precision, and AUC value for classification models. Based on the results, it was found that the M5 decision tree regression model shows R = 0.95, IoA = 0.86, and IoS = 0.96 for testing and R = 0.93, IoA = 0.88, and IoS = 0.96 for training data. On the other hand, the classification model shows accuracy = 95%, recall = 1, and F1 score = 0.97 for testing and 98.75%, 1, and 0.99 for training, respectively. Both of these results were found for the Kfold technique, which predicts a more accurate value than other divisional approaches.
    کلید واژگان
    Soil liquefaction
    Machine learning techniques
    Regression Model
    Classification model
    Performance metrics
    Geotechnical Engineering for Disaster Mitigation and Rehabilitation

    شماره نشریه
    3
    تاریخ نشر
    2025-08-01
    1404-05-10
    ناشر
    Semnan University
    سازمان پدید آورنده
    Lecturer, Department of Civil Engineering, Pundra University of Science and Technology, Bangladesh
    Lecturer, Department of Civil Engineering, Hajee Mohammad Danesh Science and Technology University, Bangladesh

    شاپا
    2345-4415
    2345-4423
    URI
    https://dx.doi.org/10.22075/jrce.2025.34669.2134
    https://civiljournal.semnan.ac.ir/article_9317.html
    https://iranjournals.nlai.ir/handle/123456789/1169244

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب