• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Stress Analysis
    • Volume 7, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Stress Analysis
    • Volume 7, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parametric Investigation of Carbon Nanotube-Based Nanomechanical Mass Sensors using Structural Mechanics and an Artificial Neural Network Approach

    (ندگان)پدیدآور
    Naghibi, Z.Payandehpeyman, J.Moradi, K.
    Thumbnail
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The use of single-walled carbon nanotubes (CNTs) as mechanical sensors todetect tiny objects has dramatically expanded in the last decade. In this article, the parameters affecting the efficiency of sensors, including the diameter ofsingle-walled carbon nanotubes (SWCNTs), the length of SWCNTs, SWCNTchirality, applied strain, and added mass, were investigated. At first, theeffects of the desired parameters were investigated using structural mechanics.Then, an artificial neural network (ANN) was trained to predict the sensorbehavior in other design points. After the training phase, the ANN-basedmodel provided an accurate macro-model of a sensor. The results showedthat the nanotube-based sensor could detect a mass of even 10 zeptograms(1zg=10−21g) and that the applied axial strain significantly increased theefficiency of the sensor. According to the results, the ANN-based model canmodel the dynamic behavior of this type of sensor with significant accuracy.Moreover, the ANN-based model is 104 orders of magnitude faster than theexisting models in structural mechanics.
    کلید واژگان
    carbon nanotubes
    nanomechanical sensors
    Artificial neural network
    Finite element method
    macro modeling

    شماره نشریه
    1
    تاریخ نشر
    2022-09-01
    1401-06-10
    ناشر
    Bu-Ali Sina University
    سازمان پدید آورنده
    Department of Computer Engineering, Hamedan University of Technology, Hamedan, Iran.
    Department of Mechanical Engineering, Hamedan University of Technology, Hamedan, Iran.
    Department of Mechanical Engineering, Hamedan University of Technology, Hamedan, Iran.

    شاپا
    2588-2597
    2588-3054
    URI
    https://dx.doi.org/10.22084/jrstan.2023.26558.1216
    https://jrstan.basu.ac.ir/article_5211.html
    https://iranjournals.nlai.ir/handle/123456789/1166774

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب