نمایش مختصر رکورد

dc.contributor.authorAkhtardanesh, Mohammad Alien_US
dc.contributor.authorAlipour, Ensiehen_US
dc.contributor.authorFarshchi, Mohammaden_US
dc.date.accessioned1404-03-11T04:51:27Zfa_IR
dc.date.accessioned2025-06-01T04:51:30Z
dc.date.available1404-03-11T04:51:27Zfa_IR
dc.date.available2025-06-01T04:51:30Z
dc.date.issued2025-07-01en_US
dc.date.issued1404-04-10fa_IR
dc.date.submitted2024-10-07en_US
dc.date.submitted1403-07-16fa_IR
dc.identifier.citationAkhtardanesh, Mohammad Ali, Alipour, Ensieh, Farshchi, Mohammad. (2025). Hybrid deep learning for nonlinear acoustic-driven flame dynamics and experimental validation. Journal of Theoretical and Applied Vibration and Acoustics, 11(1), 57-72. doi: 10.22064/tava.2025.2042805.1254en_US
dc.identifier.issn2423-4761
dc.identifier.urihttps://dx.doi.org/10.22064/tava.2025.2042805.1254
dc.identifier.urihttps://tava.isav.ir/article_721796.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/1165669
dc.description.abstractThis study proposes a hybrid deep-learning model that combines Convolutional Neural Networks (CNNs) with a Transformer Encoder to investigate the nonlinear dynamics of a laminar, partially premixed counterflow flame under acoustic excitation. The model was trained on experimental data obtained from a combustion instability laboratory. OH* chemiluminescence was employed to measure flame responses across a frequency range of 20 to 350 Hz and pressure amplitudes extending up to the extinction threshold. The research explores the intricate interactions between acoustic waves and flame dynamics, providing insights into how varying amplitudes and frequencies influence heat release rates. Despite inherent limitations in the dataset, the model demonstrated a robust ability to accurately approximate the flame transfer function, successfully replicating chemiluminescence signals and forecasting flame reactions to diverse acoustic excitations. Additionally, the repeatability of the flame structure was rigorously validated through high-speed imaging and image processing techniques, confirming consistent flame characteristics over multiple testing cycles. The results underline the significant promise of the hybrid deep-learning approach as a reliable tool for predicting flame behavior in complex acoustic environments, offering practical implications for mitigating combustion instabilities in various engineering applications. This research represents a significant step forward in applying machine learning techniques to enhance the predictability and control of flame dynamics in real-world systems.en_US
dc.format.extent2418
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherIranian Society of Acoustics and Vibration and Avecinaen_US
dc.relation.ispartofJournal of Theoretical and Applied Vibration and Acousticsen_US
dc.relation.isversionofhttps://dx.doi.org/10.22064/tava.2025.2042805.1254
dc.subjectPartially premixed flameen_US
dc.subjectacoustic waveen_US
dc.subjectConvolutional neural networken_US
dc.subjectDeep Learningen_US
dc.subjectcombustion instabilityen_US
dc.subjectInteraction of sound with light and other forms of radiationen_US
dc.titleHybrid deep learning for nonlinear acoustic-driven flame dynamics and experimental validationen_US
dc.typeTexten_US
dc.typeH. Ahmadian Prizeen_US
dc.contributor.departmentPh.D. Candidate, Aerospace Engineering Department, Sharif University of Technology, Tehran, IRAN.en_US
dc.contributor.departmentPh.D. Candidate, Aerospace Engineering Department, Sharif University of Technology, Tehran, IRAN.en_US
dc.contributor.departmentFull Professor, Aerospace Engineering Department, Sharif University of Technology, Tehran, IRAN.en_US
dc.citation.volume11
dc.citation.issue1
dc.citation.spage57
dc.citation.epage72
nlai.contributor.orcid0009-0002-3354-6723
nlai.contributor.orcid0000-0002-7010-0459
nlai.contributor.orcid0000-0003-2954-4346


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد