• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Theoretical and Applied Vibration and Acoustics
    • Volume 11, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Theoretical and Applied Vibration and Acoustics
    • Volume 11, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hybrid deep learning for nonlinear acoustic-driven flame dynamics and experimental validation

    (ندگان)پدیدآور
    Akhtardanesh, Mohammad AliAlipour, EnsiehFarshchi, Mohammad
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    2.361 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    H. Ahmadian Prize
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    This study proposes a hybrid deep-learning model that combines Convolutional Neural Networks (CNNs) with a Transformer Encoder to investigate the nonlinear dynamics of a laminar, partially premixed counterflow flame under acoustic excitation. The model was trained on experimental data obtained from a combustion instability laboratory. OH* chemiluminescence was employed to measure flame responses across a frequency range of 20 to 350 Hz and pressure amplitudes extending up to the extinction threshold. The research explores the intricate interactions between acoustic waves and flame dynamics, providing insights into how varying amplitudes and frequencies influence heat release rates. Despite inherent limitations in the dataset, the model demonstrated a robust ability to accurately approximate the flame transfer function, successfully replicating chemiluminescence signals and forecasting flame reactions to diverse acoustic excitations. Additionally, the repeatability of the flame structure was rigorously validated through high-speed imaging and image processing techniques, confirming consistent flame characteristics over multiple testing cycles. The results underline the significant promise of the hybrid deep-learning approach as a reliable tool for predicting flame behavior in complex acoustic environments, offering practical implications for mitigating combustion instabilities in various engineering applications. This research represents a significant step forward in applying machine learning techniques to enhance the predictability and control of flame dynamics in real-world systems.
    کلید واژگان
    Partially premixed flame
    acoustic wave
    Convolutional neural network
    Deep Learning
    combustion instability
    Interaction of sound with light and other forms of radiation

    شماره نشریه
    1
    تاریخ نشر
    2025-07-01
    1404-04-10
    ناشر
    Iranian Society of Acoustics and Vibration and Avecina
    سازمان پدید آورنده
    Ph.D. Candidate, Aerospace Engineering Department, Sharif University of Technology, Tehran, IRAN.
    Ph.D. Candidate, Aerospace Engineering Department, Sharif University of Technology, Tehran, IRAN.
    Full Professor, Aerospace Engineering Department, Sharif University of Technology, Tehran, IRAN.

    شاپا
    2423-4761
    URI
    https://dx.doi.org/10.22064/tava.2025.2042805.1254
    https://tava.isav.ir/article_721796.html
    https://iranjournals.nlai.ir/handle/123456789/1165669

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب