• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
    • Volume 44, Issue 5
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
    • Volume 44, Issue 5
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    High-Throughput Screening of Hypothetical MOFs for Predicting Xenon Uptake Using Machine Learning Methods

    (ندگان)پدیدآور
    Ghorbani, RohollahKarimi-Sabet, JavadLalinia, MinooshDastbaz, AbolfazlMoosavian, Mohammad Ali
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.123 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Xenon (Xe) gas adsorption in Metal-Organic Frameworks (MOFs) is a critical area for noble gas separation due to Xe's scarcity and high market value. Despite its importance, previous studies have largely overlooked the role of diverse Machine Learning (ML) models in predicting gas adsorption behavior under varying pressures. This study aims to fill this gap by developing a comprehensive database of hypothetical MOFs and applying advanced ML frameworks to predict Xe adsorption. Key structural descriptors—Void Fraction, Gravimetric Surface Area, Volumetric Surface Area, Pore Limiting Diameter, and Large Cavity Diameter—were integrated alongside adsorption pressure to enhance predictive accuracy. We trained and evaluated multiple ML models, including Ensemble Learning, Exponential Gaussian Process Regression, Fine Gaussian Support Vector Machines, and Bilayered Neural Networks, based on metrics such as RMSE (0.937 for EGPR), R² (0.83 for EGPR), and processing speed (up to 58,000 observations per second for FGSVM). Our screening identified four optimal MOFs—hMOF-30258, hMOF-30132, hMOF-5001015, and hMOF-30001—with superior Xe adsorption capabilities, featuring pcu and sql topologies that offer high surface area and porosity. These results highlight the potential of ML-driven approaches to revolutionize MOF design, paving the way for efficient noble gas separation technologies.
    کلید واژگان
    Metal-organic frameworks
    Adsorption
    Machine Learning
    Xenon
    Mass Transfer, Separation Processes

    شماره نشریه
    5
    تاریخ نشر
    2025-05-01
    1404-02-11
    ناشر
    Iranian Institute of Research and Development in Chemical Industries (IRDCI)-ACECR
    سازمان پدید آورنده
    School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, I.R. IRAN
    NFCRS, Nuclear Science and Technology Research Institute, Tehran, I.R. IRAN
    Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN
    School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, I.R. IRAN
    School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, I.R. IRAN

    شاپا
    1021-9986
    URI
    https://dx.doi.org/10.30492/ijcce.2025.2045569.6882
    https://ijcce.ac.ir/article_722666.html
    https://iranjournals.nlai.ir/handle/123456789/1165441

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب