• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Operation and Automation in Power Engineering
    • Volume 12, Special Issue (Open)
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Operation and Automation in Power Engineering
    • Volume 12, Special Issue (Open)
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Machine Learning-based Fault Detection and Classification in microgrid

    (ندگان)پدیدآور
    Azamovich, Azizov TuxtamishErkinjon, TulovovKhalmirzaev, MansurMukhitdinov, OtabekNumanovich, Nizamov AkhtamSapaev, I.B.Rakhmonov, ToshmirzaMinovvarkhon Sabirovna, YunusovaMamatkulovich, Bobokulov BakhromkulKhakimboy ugli, Bobojonov OtabekTulakov, UlugbekKholikov, Rаvshаn
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.594 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Fault Detection and Classification plays a vital role in maintaining the reliability and stability of microgrids, especially as they incorporate renewable energy sources and become more decentralized. Microgrids face a wide variety of faults, such as short circuits, line-to-ground faults, and other disturbances, which can negatively affect system performance. Traditional fault detection methods have primarily focused on False Data Injection and cyber-attacks, emphasizing vulnerabilities in communication infrastructure. However, this study addresses current faults within the electrical network, focusing on system stability and real-time fault detection in the absence of communication-related errors. In this work, machine learning techniques are employed to enhance fault classification accuracy. Partial Least Squares is used for feature selection to extract relevant statistical features from real-time current data collected from various microgrid components. By optimizing these features and applying them to machine learning models, the approach overcomes the limitations of conventional fault detection methods. The results show a significant improvement in fault classification performance, with up to 10% higher accuracy compared to traditional methods. Additionally, the use of data from neighboring microgrid components boosts the model's robustness, adaptability, and performance under varying operational conditions, contributing to a more resilient microgrid. This research introduces an innovative approach to fault detection in microgrids by combining machine learning and feature optimization, offering a more accurate, reliable, and efficient solution to ensure continuous energy supply and improve system stability under different fault scenarios.
    کلید واژگان
    Fault detection
    feature selection
    Fault classification
    data-driven modeling
    system stability
    short circuit faults
    Micro Grid Protection & Control

    تاریخ نشر
    2024-06-01
    1403-03-12
    ناشر
    University of Mohaghegh Ardabili
    دانشگاه محقق اردبیلی
    سازمان پدید آورنده
    Vice-Rector for Scientific Affairs and Innovation, International School of Finance Technology and Science, Uzbekistan.
    Tashkent State University of Economics, Tashkent, Uzbekistan
    Department of "Digital Economy", Samarkand State University Named after Sharof Rashidov, University Boulevard, 15, Samarkand, 703004, Uzbekistan.
    Kimyo International University in Tashkent , Shota Rustaveli Street 156, 100121, Тashkent, Uzbekistan.
    Department of Network Economics, Samarkand State University Named after Sharof Rashidov, University Boulevard, 15, Samarkand, 703004, Uzbekistan.
    Department Physics and Chemistry, Tashkent Institute of Irrigation and Agricultural Mechanization Engineers National Research University, Tashkent, Uzbekistan.
    Department of Digital Economy, Samarkand State University Named after Sharof Rashidov, University Boulevard, 15, Samarkand, 703004, Uzbekistan.
    Department of General Sciences and Culture, Tashkent State University of Law, Uzbekistan.
    Department of Network Economics, Samarkand State University Named after Sharof Rashidov, University Boulevard, 15, Samarkand, 703004, Uzbekistan.
    Urganch State University, Uzbekistan.
    Termez State University, Termez, Uzbekistan.
    Department of Fundamental Economic Science of the International School of Finance Technology and Science, Uzbekistan.

    شاپا
    2322-4576
    2423-4567
    URI
    https://dx.doi.org/10.22098/joape.2025.16912.2315
    https://joape.uma.ac.ir/article_3767.html
    https://iranjournals.nlai.ir/handle/123456789/1159096

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب