• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Membrane Science and Research
    • Volume 11, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Membrane Science and Research
    • Volume 11, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Permeate Flux Prediction in Dead-End Ultrafiltration of Different Types of Juices Using ANN and KNN Algorithms

    (ندگان)پدیدآور
    Ladeg, SoufyaneMoulai-Mostefa, NadjiOuld-Dris, AissaDing, Luhui
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    909.3کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The main objectives of this study were to investigate the efficiency and model the dead-end ultrafiltration (UF) process applied to natural juices (chicory, beets and alfalfa) using two nonlinear methodologies. Artificial intelligence, specifically multiple linear perception (MPL) artificial neural networks (ANN), and k-nearest neighbours (KNN) were employed to forecast the permeate flux in two dead-end UF systems: Amicon vessel (AD) and rotating disc membranes (DRDM). The prediction was based on six key input variables, namely volumetric recovery rate (VRR), membrane porosity, transmembrane pressure (TMP), rotating velocity (Ω), density (ρ), and filtration device as a new input qualitative parameter. Permeate flux was used as outlet. The trial-and-error approach was utilized to find the architecture that produced the most suitable model, based on two key statistical metrics: the root mean square error (RMSE) and coefficient of determination (R²). The results obtained indicated that the ANN model demonstrates an ability to forecast the permeate flux in UF of juices with a value of R² of 0.919 and an RMSE of 7.71. Conversely, for the KNN model with K set at 3, the R² and RMSE values were found equal to 0.72043 and 7.6097, respectively. Consequently, ANN yields a superior value of R² compared to KNN, despite the latter exhibits marginally lower RMSE values. The advantage of this research is its effectiveness in predicting filtration results. It also saves time and effort by evaluating two types of dead-end filtration mechanisms under various experimental conditions.
    کلید واژگان
    Dead-end ultrafiltration
    Juice filtration
    permeate flux
    Modeling
    ANN
    KNN
    Modeling, simulation and optimization

    شماره نشریه
    2
    تاریخ نشر
    2025-04-01
    1404-01-12
    ناشر
    FIMTEC & MPRL
    سازمان پدید آورنده
    FST, University of Tissemsilt, Rue de Bougara-Ben Hamouda, 38004 Tissemsilt, Algeria
    LME, University of Medea, Ain D’Heb, 26001 Medea, Algeria
    EA 4297 TIMR, Technological University of Compiegne, 60205 Compiegne Cedex, France
    EA 4297 TIMR, Technological University of Compiegne, 60205 Compiegne Cedex, France

    شاپا
    2476-5406
    URI
    https://dx.doi.org/10.22079/jmsr.2025.2038954.1673
    https://www.msrjournal.com/article_720649.html
    https://iranjournals.nlai.ir/handle/123456789/1154306

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب