• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Modeling and Simulation in Electrical and Electronics Engineering
    • Volume 4, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Modeling and Simulation in Electrical and Electronics Engineering
    • Volume 4, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Applying Deep Generative Methods to Generate Synthetic Data in Power Systems

    (ندگان)پدیدآور
    Kariman Majd, MohsenNiasati, Mohsen
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    347.4کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The lack of access to reliable databases, as well as the small number and imbalance of databases, is one of the main limitations of using machine learning methods in power systems, which can reduce efficiency and cause distrust in the results obtained from these methods. One of the solutions used to solve this problem is the use of Synthetic data generation. Two deep generative architectures, Generative Adversarial Network (GAN) and Variational Auto Encoder (VAE), are currently used to generate synthetic data. Due to the novelty and importance of the subject, until now, a comparative study has not been done on the research conducted in this field, in terms of subject classification, with an emphasis on validation methods of synthetic production databases. The purpose of this research is to review the studies done in this field up to now and examine the research trends for the future. In this regard, after introducing the principles of GAN and VAE deep architectures, the subject of synthetic data generation using the mentioned methods in power systems has been studied comparatively.
    کلید واژگان
    synthetic data
    Deep learning
    Generative adversarial network
    Variational Auto Encoder
    power systems
    Power System

    شماره نشریه
    2
    تاریخ نشر
    2024-08-01
    1403-05-11
    ناشر
    Semnan University
    سازمان پدید آورنده
    Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran.
    Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran.

    URI
    https://dx.doi.org/10.22075/mseee.2025.34488.1164
    https://mseee.semnan.ac.ir/article_9463.html
    https://iranjournals.nlai.ir/handle/123456789/1154095

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب