• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Modeling and Simulation in Electrical and Electronics Engineering
    • Volume 4, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Modeling and Simulation in Electrical and Electronics Engineering
    • Volume 4, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Novel Video Super-Resolution Enhancement Method Based on Residual Learning Using Hidden Markov Random Fields and a New Deep Learning Network Architecture

    (ندگان)پدیدآور
    Mahdizadeh, MahnazKhazaei, AliSeyyed Mahdavi Chabok, Seyyed JavadKhatib, Farzan
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    531.6کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In today's world, improving the quality and clarity of videos has become increasingly important, particularly in the fields of surveillance, medicine, and imaging technologies. Traditional super-resolution methods primarily focus on the full reconstruction of video frames, which poses challenges in preserving fine details and complex structures. This paper introduces a novel approach based on parallel deep networks, effectively enhancing video quality by dividing video frames into three separate input branches: raw images, outputs based on Hidden Markov Random Fields (HMRF), and temporal images. The method also leverages techniques such as residual learning and random patching within a unified framework that combines spatial segmentation (HMRF) and temporal information. This integration allows the model to better capture spatial and temporal dependencies, leading to more accurate and efficient video frame reconstruction. To better focus on high-frequency details and mitigate the vanishing gradient problem, residual learning is employed, enabling the network to estimate only the additional details necessary for reconstructing high-resolution images. Additionally, through random patching, the network training process is designed to emphasize critical features and intricate textures. Experimental results demonstrate that the proposed method achieves an SSIM of 0.92857 and a PSNR of 34.8617, offering superior clarity in video reconstruction.
    کلید واژگان
    Super-resolution
    Deep learning
    Hidden Markov Random Fields
    residual learning
    random patching
    Communication System

    شماره نشریه
    1
    تاریخ نشر
    2024-05-01
    1403-02-12
    ناشر
    Semnan University
    سازمان پدید آورنده
    Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
    Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
    Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
    Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

    URI
    https://dx.doi.org/10.22075/mseee.2025.36069.1190
    https://mseee.semnan.ac.ir/article_9521.html
    https://iranjournals.nlai.ir/handle/123456789/1154090

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب