• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Civil Engineering Infrastructures Journal
    • Volume 57, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Civil Engineering Infrastructures Journal
    • Volume 57, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Machine Learning-Based Estimation of Concrete Compressive Strength: A Multi-Model and Multi-Dataset Study

    (ندگان)پدیدآور
    Hoang, NhatTran, Duc
    Thumbnail
    نوع مدرک
    Text
    Research Papers
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Concrete is a commonly used construction material due to its favourable engineering properties, such as high compressive strength, good durability, and resistance to corrosion. Accurate predictions of the compressive strength of this material significantly reduce the time and effort required by laboratory tests. The current paper aims to compare the performance of prominent machine learning-based approaches used for predicting the compressive strength of concrete. In addition, 11 historical datasets, collected from the literature, are used. The diversity of the input features, the data dimensionality, and the number of instances can be helpful to evaluate the generalization capability of the employed machine learning models. Repetitive data sampling processes, consisting of 20 independent runs, are carried out to obtain the machine learning models' performances. Through experiments, it can be shown that the gradient boosting machines attain the best performance. Notably, the extreme gradient boosting machine has achieved the best outcome in five historical datasets.
    کلید واژگان
    Concrete Compressive Strength
    Gradient-Boosting Machine
    Machine learning
    Regression models
    Comparative Study

    شماره نشریه
    2
    تاریخ نشر
    2024-12-01
    1403-09-11
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Ph.D. Instructor, Faculty of Civil Engineering, Duy Tan University, Da Nang, Vietnam.
    Ph.D. Instructor, Faculty of Civil Engineering, Duy Tan University, Da Nang, Vietnam.

    شاپا
    2322-2093
    2423-6691
    URI
    https://dx.doi.org/10.22059/ceij.2023.354679.1910
    https://ceij.ut.ac.ir/article_93331.html
    https://iranjournals.nlai.ir/handle/123456789/1150275

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب