On relationship between reformulated Sombor and other vertex--degree indices
(ندگان)پدیدآور
Milovanovic, EminaStankov, StefanBozkurt Altındağ, Şerife BurcuMatejic, MarjanMilovanovic, Igor
نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $G=(V,E)$, $V=\{v_1, v_2,\ldots,v_n\}$, $E=\{e_1, e_2,\ldots,e_m\}$, be a simple connected graph with $n\ge 2$ vertices and $m$ edges, with vertex degree sequence $\Delta=d_1\ge d_2\ge \cdots \ge d_n=\delta$, $ d_i=d(v_i)$, and edge degree sequence $\Delta_e=d(e_1)\ge d(e_2)\ge \cdots \ge d(e_n)=\delta_e$. The reformulated Sombor index is defined as $RS(G) =\sum_{e_i\sim e_j}\sqrt{d(e_i)^2+d(e_j)^2}$. We consider a relationship between reformulated Sombor index and some of the vertex--degree-based indices.
کلید واژگان
Topological indicesVertex degree
Sombor indices
05C Combinatorics: Graph theory
شماره نشریه
3تاریخ نشر
2025-09-011404-06-10
ناشر
University of Isfahanسازمان پدید آورنده
Faculty of Electronic Engineering, University of Niš, Niš, SerbiaFaculty of Electronic Engineering, University of Niš, Niš, Serbia
Department of Mathematics, Faculty of Science, Selçuk University, Konya, Turkey
Faculty of Electronic Engineering, University of Nis, Serbia
Faculty of Electronic Engineering, University of Niš, Niš, Serbia
شاپا
2251-86572251-8665



