• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Desert
    • Volume 29, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Desert
    • Volume 29, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Assessment of Remote Sensing Images and Products in Mapping Mangrove Forests of Iran (Northern Coasts of the Persian Gulf and the Gulf of Oman).

    (ندگان)پدیدآور
    Miandej, MohammadrezaAshournejad, QadirGarshasbi, Fateme
    Thumbnail
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Mangrove forests play a vital role in providing ecosystem services such as coastal protection and mitigating the impacts of climate change, necessitating mapping for assessment, monitoring, conservation, and management. Advances in remote sensing have enabled rapid and accurate mapping of these forests. This study aims to determine the best method for mapping Iran's mangrove forests (northern coasts of the Persian Gulf and the Gulf of Oman) by comparing the Mangrove Vegetation Index (MVI) and Random Forest (RF) classification using Landsat-9 and Sentinel-2 satellite data, as well as evaluating the accuracy of land cover products from the European Space Agency (ESA), the GLC_FCS30 land cover product, and the Global Mangrove Watch (GMW) product. The results show respective mangrove class accuracies of 95%, 84%, 91%, 86%, 83%, 80%, and 78% for MVI with Sentinel-2 data, MVI with Landsat-9 data, RF classification with Sentinel-2 data, RF classification with Landsat-9 data, ESA product, GLC_FCS30 product, and GMW product. The corresponding areas were 11,509 ha, 11,834.5 ha, 10,779.41 ha, 13,702.23 ha, 15,814 ha, 11,441.5 ha, and 11,117 ha, respectively. The findings indicate that Sentinel-2 data show higher potential than Landsat-9 data for mapping Iran's mangrove forests. Furthermore, the results demonstrate the higher accuracy of the generated maps compared to existing remote sensing products. These findings not only highlight the potential of modern remote sensing data for enhancing mangrove forest mapping but also pave the way for more precise and cost-effective monitoring strategies, which are crucial for conservation efforts in coastal ecosystems.
    کلید واژگان
    Mangrove forests
    remote sensing
    Mangrove Vegetation Index (MVI)
    Random Forest (RF) classification

    شماره نشریه
    2
    تاریخ نشر
    2024-12-01
    1403-09-11
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Department of Geography and Urban Planning, Faculty of Humanities and Social Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
    Department of Geography and Urban Planning, Faculty of Humanities and Social Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
    Department of Geography and Urban Planning, Faculty of Humanities and Social Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran

    شاپا
    2008-0875
    475-2345X
    URI
    https://dx.doi.org/10.22059/jdesert.2024.100718
    https://jdesert.ut.ac.ir/article_100718.html
    https://iranjournals.nlai.ir/handle/123456789/1149019

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب