• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Medical Physics
    • Volume 21, Issue 6
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Medical Physics
    • Volume 21, Issue 6
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigating Motion Data Selections Based on Patient-Specific Respiration Pattern at External Surrogates Radiotherapy Using Cyberknife Synchrony Respiratory Tracking System

    (ندگان)پدیدآور
    Dastyar, Seyed AmirrezaEsmaili Torshabi, Ahmad
    Thumbnail
    نوع مدرک
    Text
    Original Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Introduction: : In order to personalize motion compensated radiotherapy with external surrogates, an intelligent method is proposed for selecting external surrogates' motion data on the basis of patient-specific respiration pattern. This strategy enhances targeting accuracy and can potentially feed the stereoscopic X-ray imaging system and lead to fewer imaging dose, intelligently. Material and Methods: We investigate the effects of training data points firstly on correlation model construction at pre-treatment step for its training. Then, the same assessment will be done by means of updating data points on the model re-construction. Moreover, a recognition algorithm has been developed to detect high variability of breathing motion using pre-defined discriminator levels based on external motion amplitude. Results: The number of training and updating data points can be intelligently optimized depending on the breathing pattern of each patient. In addition, by developing recognition algorithm, the shooting time for motion data selection is converted from conventional strategy to intelligent approach, accordingly. As example, for a patient with high motion variability while the number of critical data points recognized by our algorithm is significant, the targeting error with and without utilizing these data points are 4.4 mm and 6.6 mm, respectively. Conclusion: This work promises to be aid a more personalized delivery of motion compensated radiotherapy using external surrogates by considering to motion data gathering, according to patient-specific respiration pattern. By implementing our strategy, we expect to make a compromise between the performance accuracy of correlation model and additional imaging dose.
    کلید واژگان
    CyberKnife Radiosurgery
    Tumor
    Motion
    Intelligent
    Model
    Medical Physics

    شماره نشریه
    6
    تاریخ نشر
    2024-12-01
    1403-09-11
    ناشر
    Mashhad University of Medical Sciences
    سازمان پدید آورنده
    Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Haftbagh Highway, 7631885356 Kerman, Iran
    Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, Iran

    شاپا
    2345-3672
    URI
    https://dx.doi.org/10.22038/ijmp.2024.72269.2284
    https://ijmp.mums.ac.ir/article_23835.html
    https://iranjournals.nlai.ir/handle/123456789/1142322

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب