ON THE FINITENESS OF LOCAL HOMOLOGY MODULES
(ندگان)پدیدآور
Fathi, AliHajikarimi, Alireza
نوع مدرک
TextOriginal Manuscript
زبان مدرک
Englishچکیده
Let $R$ be a commutative Noetherian ring and $\mathfrak{a}$ be an ideal of $R$. Suppose $M$ is a finitely generated $R$-module and $N$ is an Artinian $R$-module. We define the concept of filter coregular sequence to determine the infimum of integers $i$ such that the generalized local homology $\textrm{H}^{\mathfrak{a}}_i(M, N)$ is not finitely generated as an $\widehat{R}^{\mathfrak{a}}$-module, where $\widehat{R}^{\mathfrak{a}}$ denotes the $\mathfrak{a}$-adic completion of $R$. In particular, if $R$ is a complete semi-local ring, then $\textrm{H}^{\mathfrak{a}}_i(M, N)$ is a finitely generated $\widehat{R}^{\mathfrak{a}}$-module for all non-negative integers $i$ if and only if $(0:_N\mathfrak{a}+\textrm{Ann}(M))$ has finite length.
کلید واژگان
local homologyTor functor
finiteness
filter coregular sequence
شماره نشریه
1تاریخ نشر
2025-04-011404-01-12
ناشر
Shahrood University of Technologyسازمان پدید آورنده
Department of Mathematics, Zanjan Branch, Islamic Azad University, Zanjan, Iran.Department of Mathematics, Mobarakeh Branch, Islamic Azad University, Isfahan, Iran.
شاپا
2345-51282345-511X



