• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Operation and Automation in Power Engineering
    • Volume 12, Special Issue (Open)
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Operation and Automation in Power Engineering
    • Volume 12, Special Issue (Open)
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancing Microgrid Resilience with LSTM and Fuzzy Logic for Predictive Maintenance

    (ندگان)پدیدآور
    Almuratova, NurgulMustafin, MaratGali, KakimzhanZharkymbekova, MakpalChnybayeva, DannaSakitzhanov, Markhabat
    Thumbnail
    نوع مدرک
    Text
    Research paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Microgrids have become integral to modern energy systems, providing decentralized and resilient energy solutions. However, ensuring the reliability of microgrid assets poses significant challenges, particularly given aging infrastructure and unpredictable environmental conditions. While existing methods—such as predictive maintenance, real-time monitoring, and fault detection utilizing Support Vector Machines (SVM), Random Forests, and Principal Component Analysis (PCA)—enhance reliability, they often fall short due to insufficient multidimensional data analysis and limited support for realistic decision-making. This underscores the need for advanced approaches in microgrid management. In this paper, we propose an innovative machine learning-based methodology that integrates Long Short-Term Memory (LSTM) networks with fuzzy logic for predictive maintenance of microgrid assets. The proposed approach effectively addresses the inherent fluctuations and dynamic behavior of microgrids, enhancing system resilience and reducing downtime. By leveraging LSTM's ability to capture temporal patterns alongside fuzzy logic's capacity for handling uncertainties, the method proactively identifies and mitigates potential equipment failures. Traditional maintenance strategies predominantly rely on reactive mechanisms, resulting in higher costs and increased system vulnerabilities. Simulation results indicate that the proposed algorithm achieves a 10% to 40% improvement in fault detection across varying failure levels, demonstrating significant advantages over conventional techniques.
    کلید واژگان
    Microgrids
    Predictive maintenance
    achine learning
    LSTM networks
    fuzzy logic
    Power Electronic

    تاریخ نشر
    2024-06-01
    1403-03-12
    ناشر
    University of Mohaghegh Ardabili
    دانشگاه محقق اردبیلی
    سازمان پدید آورنده
    Power supply and electric drive department, Almaty University of Power Engineering and Telecommunications, Almaty 050013, Kazakhstan;
    Power supply and electric drive department, Almaty University of Power Engineering and Telecommunications, Almaty 050013, Kazakhstan;
    Power supply and electric drive department, Almaty University of Power Engineering and Telecommunications, Almaty 050013, Kazakhstan;
    Power supply and electric drive department, Almaty University of Power Engineering and Telecommunications, Almaty 050013, Kazakhstan;
    Power supply and electric drive department, Almaty University of Power Engineering and Telecommunications, Almaty 050013, Kazakhstan;
    Power supply and electric drive department, Almaty University of Power Engineering and Telecommunications, Almaty 050013, Kazakhstan;

    شاپا
    2322-4576
    2423-4567
    URI
    https://dx.doi.org/10.22098/joape.2024.15909.2225
    https://joape.uma.ac.ir/article_3602.html
    https://iranjournals.nlai.ir/handle/123456789/1133297

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب