• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Modeling and Simulation in Electrical and Electronics Engineering
    • Volume 4, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Modeling and Simulation in Electrical and Electronics Engineering
    • Volume 4, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electrical Load Forecasting Using a Hybrid Large Margin Nearest Neighbor Method

    (ندگان)پدیدآور
    Ashoorzadeh, AliehToloie Eshlaghy, AbbasAfshar Kazemi, Mohammad Ali
    Thumbnail
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Load forecasting is a key component of electric utility operations and planning. Because of today's highly developed electricity markets and rapidly growing power systems, load forecasting is becoming an essential part of power system operation scheduling. This paper proposes a new short-term load forecasting model based on the large margin nearest neighbor (LMNN) classification algorithm to improve prediction accuracy. The accuracy of many classification methods, such as k-nearest neighbor (k-NN), is significantly influenced by the technique used to calculate sample distances. The Mahalanobis distance is one of the most widely used methods for calculating distance. Numerous techniques have been used to enhance k-NN performance in recent years, including LMNN. Our proposed approach aims to solve the local optimum problem of LMNN, compute data similarities, and optimize the cost function that establishes the distances between instances. Before using gradient descent to determine the ideal parameter values for the cost function, we employ a genetic algorithm to shrink the size of the solution space. Additionally, our method's forecasting errors are contrasted with those of the BPNN and ARMA models. The comparative findings show how well the recommended forecasting model performs in short-term load forecasting.
    کلید واژگان
    Short-Term Load Forecasting
    Large Margin Nearest Neighbor
    Distance learning
    Genetic algorithm
    Computer

    شماره نشریه
    1
    تاریخ نشر
    2024-05-01
    1403-02-12
    ناشر
    Semnan University
    سازمان پدید آورنده
    Department of Information Technology Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.
    Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.
    Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

    URI
    https://dx.doi.org/10.22075/mseee.2025.35788.1184
    https://mseee.semnan.ac.ir/article_9496.html
    https://iranjournals.nlai.ir/handle/123456789/1113897

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب