Noninner automorphisms of finite $p$-groups leaving the center elementwise fixed
(ندگان)پدیدآور
Abdollahi, AlirezaGhoraishi, S. Mohsenنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
A longstanding conjecture asserts that every finite nonabelian $p$-group admits a noninner automorphism of order $p$. Let $G$ be a finite nonabelian $p$-group. It is known that if $G$ is regular or of nilpotency class $2$ or the commutator subgroup of $G$ is cyclic, or $G/Z(G)$ is powerful, then $G$ has a noninner automorphism of order $p$ leaving either the center $Z(G)$ or the Frattini subgroup $Phi(G)$ of $G$ elementwise fixed. In this note, we prove that the latter noninner automorphism can be chosen so that it leaves $Z(G)$ elementwise fixed.
کلید واژگان
Noninner automorphismfinite p-groups
the center
20D20 Sylow subgroups, Sylow properties, π-groups, π-structure
20D45 Automorphisms
20E34 General structure theorems
20E36 Automorphisms of infinite groups
شماره نشریه
4تاریخ نشر
2013-12-011392-09-10
ناشر
University of Isfahanسازمان پدید آورنده
University of IsfahanUniversity of Isfahan
شاپا
2251-76502251-7669




