Wavelet-based numerical method for solving fractional integro-differential equation with a weakly singular kernel
(ندگان)پدیدآور
Mohammadi, FakhrodinCiancio, Armandoنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
This paper describes and compares application of wavelet basis and Block-Pulse functions (BPFs) for solving fractional integro-differential equation (FIDE) with a weakly singular kernel. First, a collocation method based on Haar wavelets (HW), Legendre wavelet (LW), Chebyshev wavelets (CHW), second kind Chebyshev wavelets (SKCHW), Cos and Sin wavelets (CASW) and BPFs are presented for driving approximate solution FIDEs with a weakly singular kernel. Error estimates of all proposed numerical methods are given to test the convergence and accuracy of the method. A comparative study of accuracy and computational time for the presented techniques is given.
کلید واژگان
Fractional integro-differential equationWeakly singular integral kernel
Collocation method, Error estimates
شماره نشریه
1تاریخ نشر
2017-08-011396-05-10
ناشر
Vali-e-Asr university of Rafsanjanسازمان پدید آورنده
Department of Mathematics‎, ‎University of ‎Hormozgan‎, ‎P‎. ‎O‎. ‎Box 3995‎, ‎Bandarabbas‎, ‎IranDepartment of Biomedical Sciences and Morphological and Functional Imaging‎,‎ University of Messina‎, ‎via Consolare Valeria 1‎, ‎98125 MESSINA‎, ‎Italy
شاپا
2383-19362476-3926




