• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Artificial Intelligence in Electrical Engineering
    • Volume 11, Issue 42
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Artificial Intelligence in Electrical Engineering
    • Volume 11, Issue 42
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Using Cluster and Feature Weighted FCM for reducing ANFIS Rules

    (ندگان)پدیدآور
    Abdollahizad, Solmaz
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.101 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Fuzzy c-means (FCM) is assumed that all the features are of equal importance. In real applications, however, the importance of the features is different and there exist some features that are more important than the others. These important features should basically have more effects than the other features in the forming of optimal clusters. The basic FCM algorithm does not support this idea. Also, the FCM algorithm suffers from another problem; the algorithm is very sensitive to initialization, whereas a bad initialization leads to a poor local optimum. In this paper, motivated by these weaknesses of the FCM, the goal is to solve the two problems at the same time. In doing so, an automatic local feature weighting scheme is proposed to properly weight the features of each clusters. And, a cluster weighting process is performed to mitigate the initialization sensitivity of the FCM. Feature weighting and cluster weighting are performed simultaneously and automatically during the clustering process resulting in high quality clusters, regardless of the initial centers. Extensive experiments conducted on a synthetic dataset and 16 real world datasets indicate that the proposed algorithm outperforms the state-of-the-arts algorithms. The convergence proof of the proposed algorithm is also provided.
    کلید واژگان
    fuzzy c-means
    Clustering
    Feature

    شماره نشریه
    42
    تاریخ نشر
    2022-09-01
    1401-06-10
    ناشر
    Ahar Branch,Islamic Azad University, Ahar,Iran
    سازمان پدید آورنده
    1) Department of Computer Engineering, Sardroud Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran

    شاپا
    2345-4652
    URI
    https://jaiee.ahar.iau.ir/article_704926.html
    https://iranjournals.nlai.ir/handle/123456789/1025724

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب