• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Congress of Radiology
    • Volume 37, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Congress of Radiology
    • Volume 37, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    USING DEEP LEARNING NETWORKS FOR CLASSIFICATION OF LUNG CANCER NODULES IN CT IMAGES

    (ندگان)پدیدآور
    Javadzadeh Barzaki, Mohammad AliNegaresh, MohammadAbdollahi, JafarMohammadi, MohsenGhobadi, HassanMohammadzadeh, BahmanAmani, Firouz
    Thumbnail
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Purpose: One of the foremost common cancers around the world is lung cancer (LC) which evaluation of its incidence very important for more robust planning. Computerized tomography (CT) is important for the diagnosis of lung nodules in carcinoma. Recently, algorithms like deep learning have been considered as a promising method within all medical field, therefore, we try to using various deep learning networks for classification of lung cancer nodules in CT images. Methods: In this paper, open-source datasets, and multicenter datasets are used. Three CNN architectures (VGG16, VGG19, and Inceptionv3) were designed to detection lung nodules and classified them into two malignant or benign groups based on their pathologically and laboratory results. Results: The accuracy of these three CNN architectures in 10-fold training model were found to be 98.3%, 99.6%, and 99.5%, respectively. There was no difference in term of sensitivity and specificity between larger and smaller nodules. The model validation was checked by manually assessments of CT by doctors and compared with three-dimensional CNN results. The performance of the CNN model was better and accurate than manual assessment. Conclusion: Results showed that, of the CNN architectures, The VGG19 with an accuracy of 99.6% has the best performance among the three networks.
    کلید واژگان
    Deep Learning
    Lung cancer
    Early Diagnosis
    Computed Tomography

    شماره نشریه
    2
    تاریخ نشر
    2022-07-01
    1401-04-10
    ناشر
    Iranian Society of Radiology
    سازمان پدید آورنده
    Department of Radiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.

    شاپا
    25885545
    URI
    https://dx.doi.org/10.22034/icrj.2022.173678
    https://www.icrjournal.ir/article_173678.html
    https://iranjournals.nlai.ir/handle/123456789/1022782

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب