• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Caspian Journal of Internal Medicine
    • Volume 14, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Caspian Journal of Internal Medicine
    • Volume 14, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Endometrial cancer in women with abnormal uterine bleeding: Data mining classification methods

    (ندگان)پدیدآور
    Farzaneh, FarahJafari Ashtiani, AzadehHashemi, Mohammad MohammadHosseini, Maryam SadatArab, MalihehAshrafganjoei, TaherehHooshmand Chayjan, Shaghayegh
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    433.6کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Background: Over the last decade, artificial intelligence in medicine has been growing. Since endometrial cancer can be treated with early diagnosis, finding a non-invasive method for screening patients, especially high-risk ones, could have a particular value. Regarding the importance of this issue, we aimed to investigate the risk factors related to endometrial cancer and find a tool to predict it using machine learning. Methods: In this cross-sectional study, 972 patients with abnormal uterine bleeding from January 2016 to January 2021 were studied, and the essential characteristics of each patient, along with the findings of curettage pathology, were analyzed using statistical methods and machine learning algorithms, including artificial neural networks, classification and regression trees, support vector machine, and logistic regression. Results: Out of 972 patients with a mean age of 45.77 ± 10.70 years, 920 patients had benign pathology, and 52 patients had endometrial cancer. In terms of endometrial cancer prediction, the logistic regression model had the best performance (sensitivity of 100% and 98%, specificity of 98.83% and 98.7%, for trained and test data sets respectively,) followed by the classification and regression trees model. Conclusion: Based on the results, artificial intelligence-based algorithms can be applied as a non-invasive screening method for predicting endometrial cancer.  
    کلید واژگان
    Endometrial Cancer
    Artificial Intelligence
    Machine Learning
    Obstetrics & Gynicology

    شماره نشریه
    3
    تاریخ نشر
    2023-05-01
    1402-02-11
    ناشر
    Babol Babol University of Medical Sciences and Health Services
    سازمان پدید آورنده
    Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
    Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
    Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
    Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
    Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
    Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
    Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

    شاپا
    2008-6164
    2008-6172
    URI
    https://dx.doi.org/10.22088/cjim.14.3.526
    http://caspjim.com/article-1-3525-en.html
    https://iranjournals.nlai.ir/handle/123456789/1012546

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب