نمایش مختصر رکورد

dc.contributor.authorAzari, A.en_US
dc.contributor.authorMarhemati, S.en_US
dc.date.accessioned1399-07-08T20:02:50Zfa_IR
dc.date.accessioned2020-09-29T20:02:50Z
dc.date.available1399-07-08T20:02:50Zfa_IR
dc.date.available2020-09-29T20:02:50Z
dc.date.issued2015-06-01en_US
dc.date.issued1394-03-11fa_IR
dc.date.submitted2014-12-24en_US
dc.date.submitted1393-10-03fa_IR
dc.identifier.citationAzari, A., Marhemati, S.. (2015). Model for Thermal Conductivity of Nanofluids Using a General Hybrid GMDH Neural Network Technique. International Journal of Nanoscience and Nanotechnology, 11(2), 71-82.en_US
dc.identifier.issn1735-7004
dc.identifier.issn2423-5911
dc.identifier.urihttp://www.ijnnonline.net/article_13470.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/80019
dc.description.abstract<em>In this study, a model for estimating the NFs thermal conductivity by using a GMDH-PNN has been investigated. NFs thermal conductivity was modeled as a function of the nanoparticle size, temperature, nanoparticle volume fraction and the thermal conductivity of the base fluid and nanoparticles. For this purpose, the developed network contains 8 layers with 2 inputs in each layer and also training algorithms of least</em><em> squares </em><em>regression. The obtained results of the model have shown good accuracy of hybrid GMDH-PNN for estimating the thermal conductivity of NFs. The RMSE of the model for 24 systems containing 211data sets was achieved 0.0224. </em><em>MAPE </em><em>for training and validation data setswere3.58 and 3.2%, respectively</em><em>. Also, the proposed hybrid GMDH-PNN model was compared with different models from the literature. The results showed that the developed model can successively correlate and predict the thermal conductivity of different groups of NFs. Moreover, a remarkable agreement for the model with the experimental data was achieved with respect to the other models from the literature.</em>en_US
dc.format.extent532
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherIranian Nanotechnology Societyen_US
dc.relation.ispartofInternational Journal of Nanoscience and Nanotechnologyen_US
dc.subjectArtificial neural networken_US
dc.subjectGMDH-PNN modelen_US
dc.subjectNanofluidsen_US
dc.subjectThermal conductivityen_US
dc.titleModel for Thermal Conductivity of Nanofluids Using a General Hybrid GMDH Neural Network Techniqueen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentFaculty of Oil, Gas and Petrochemical Engineering, Chemical Engineering Department, Persian Gulf University, Bushehr, I.R. Iranen_US
dc.contributor.departmentFaculty of Oil, Gas and Petrochemical Engineering, Chemical Engineering Department, Persian Gulf University, Bushehr, I.R. Iranen_US
dc.citation.volume11
dc.citation.issue2
dc.citation.spage71
dc.citation.epage82


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد