نمایش مختصر رکورد

dc.contributor.authorGhanizadeh, Ali Rezaen_US
dc.contributor.authorSafi Jahanshahi, Farzaden_US
dc.contributor.authorKhalifeh, Vahiden_US
dc.contributor.authorJalali, Farhangen_US
dc.date.accessioned1399-07-08T19:59:15Zfa_IR
dc.date.accessioned2020-09-29T19:59:15Z
dc.date.available1399-07-08T19:59:15Zfa_IR
dc.date.available2020-09-29T19:59:15Z
dc.date.issued2020-04-01en_US
dc.date.issued1399-01-13fa_IR
dc.date.submitted2019-05-05en_US
dc.date.submitted1398-02-15fa_IR
dc.identifier.citationGhanizadeh, Ali Reza, Safi Jahanshahi, Farzad, Khalifeh, Vahid, Jalali, Farhang. (2020). Predicting Flow Number of Asphalt Mixtures Based on the Marshall Mix design Parameters Using Multivariate Adaptive Regression Spline (MARS). International Journal of Transportation Engineering, 7(4), 433-448. doi: 10.22119/ijte.2020.184115.1476en_US
dc.identifier.issn2322-259X
dc.identifier.issn2538-3728
dc.identifier.urihttps://dx.doi.org/10.22119/ijte.2020.184115.1476
dc.identifier.urihttp://www.ijte.ir/article_102587.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/78703
dc.description.abstractRutting is one of the major distresses in the flexible pavements, which is heavily influenced by the asphalt mixtures properties at high temperatures. There are several methods for the characterization of the rutting resistance of asphalt mixtures. Flow number is one of the most important parameters that can be used for the evaluation of rutting. The flow number is measured by the dynamic creep test, which requires advanced equipment, notable cost, and time. This paper aims to develop a mathematical model for predicting the flow number of asphalt mixtures based on the Marshall mix design parameters using the Multivariate Adaptive Regression Spline (MARS). The required parameters for developing the model are as follows: percentage of fine and coarse aggregates, bitumen content, air voids content, voids in mineral aggregates, Marshall Stability, and flow. The coefficient of determination (R<sup>2</sup>) of the model for training and testing set is 0.96 and 0.97, respectively, which confirms the high accuracy of the model.  Moreover, the comparison of the developed model with the existing models shows the superior performance of the developed model. It should be noted that the developed model is valid only in the range of dataset used for the modeling.en_US
dc.format.extent676
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherTarrahan Parseh Transportation Research Instituteen_US
dc.relation.ispartofInternational Journal of Transportation Engineeringen_US
dc.relation.isversionofhttps://dx.doi.org/10.22119/ijte.2020.184115.1476
dc.subjectFlow Numberen_US
dc.subjectRuttingen_US
dc.subjectMarshall mixing design parametersen_US
dc.subjectMultivariate Adaptive Regression Spline (MARS)en_US
dc.titlePredicting Flow Number of Asphalt Mixtures Based on the Marshall Mix design Parameters Using Multivariate Adaptive Regression Spline (MARS)en_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentAssociate Professor, Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iranen_US
dc.contributor.departmentM.S Student, Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iranen_US
dc.contributor.departmentAssistant Professor, Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iranen_US
dc.contributor.departmentPh.D. Candidate, National Center for Asphalt Technology at Auburn University, USAen_US
dc.citation.volume7
dc.citation.issue4
dc.citation.spage433
dc.citation.epage448
nlai.contributor.orcid0000-0002-6618-1049


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد