نمایش مختصر رکورد

dc.contributor.authorMirarabshahi, Atefeh Sadaten_US
dc.contributor.authorKargari, Mehrdaden_US
dc.date.accessioned1399-07-08T19:58:25Zfa_IR
dc.date.accessioned2020-09-29T19:58:25Z
dc.date.available1399-07-08T19:58:25Zfa_IR
dc.date.available2020-09-29T19:58:25Z
dc.date.issued2019-09-01en_US
dc.date.issued1398-06-10fa_IR
dc.date.submitted2019-06-10en_US
dc.date.submitted1398-03-20fa_IR
dc.identifier.citationMirarabshahi, Atefeh Sadat, Kargari, Mehrdad. (2019). A Disease Outbreak Prediction Model Using Bayesian Inference: A Case of Influenza. International Journal of Travel Medicine and Global Health, 7(3), 91-98. doi: 10.15171/ijtmgh.2019.20en_US
dc.identifier.issn2322-1100
dc.identifier.issn2476-5759
dc.identifier.urihttps://dx.doi.org/10.15171/ijtmgh.2019.20
dc.identifier.urihttp://www.ijtmgh.com/article_95527.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/78409
dc.description.abstract<strong>Introduction:</strong> One major problem in analyzing epidemic data is the lack of data and high dependency among the available data, which is due to the fact that the epidemic process is not directly observable.<br /> <strong>Methods:</strong> One method for epidemic data analysis to estimate the desired epidemic parameters, such as disease transmission rate and recovery rate, is data intensification. In this method, unknown quantities are considered as additional parameters of the model and are extracted using other parameters. The Markov Chain Monte Carlo algorithm is extensively used in this field.<br /> <strong>Results:</strong> The current study presents a Bayesian statistical analysis of influenza outbreak data using Markov Chain Monte Carlo data intensification that is independent of probability approximation and provides a wider range of results than previous studies. A method for estimating the epidemic parameters has been presented in a way that the problem of uncertainty regarding the modeling of dynamic biological systems can be solved. The proposed method is then applied to fit an SIR-like flu transmission model to data from 19 years leading up to the seventh week of the 2017 incidence of influenza.<br /> <strong>Conclusion:</strong> The proposed method showed an improvement in estimating the values of all the parameters considered in the study. The results of this study showed that the distributions are significant and the error ranges are real.en_US
dc.format.extent757
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherInternational Travel Medicine Center of Iranen_US
dc.relation.ispartofInternational Journal of Travel Medicine and Global Healthen_US
dc.relation.isversionofhttps://dx.doi.org/10.15171/ijtmgh.2019.20
dc.subjectDisease Outbreaken_US
dc.subjectMetropolis-Hastings Algorithmen_US
dc.subjectInfluenzaen_US
dc.titleA Disease Outbreak Prediction Model Using Bayesian Inference: A Case of Influenzaen_US
dc.typeTexten_US
dc.typeOriginal Articleen_US
dc.contributor.departmentInformation Technology Department, Faculty of Industrial Engineering, Tarbiat Modares University, Tehran, Iranen_US
dc.contributor.departmentInformation Technology Department, Faculty of Industrial Engineering, Tarbiat Modares University, Tehran, Iranen_US
dc.citation.volume7
dc.citation.issue3
dc.citation.spage91
dc.citation.epage98
nlai.contributor.orcid0000-0002-4407-7128


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد