نمایش مختصر رکورد

dc.contributor.authorShakeri, E.en_US
dc.contributor.authorGhaemmaghami, Sh.en_US
dc.date.accessioned1399-07-08T19:44:59Zfa_IR
dc.date.accessioned2020-09-29T19:44:59Z
dc.date.available1399-07-08T19:44:59Zfa_IR
dc.date.available2020-09-29T19:44:59Z
dc.date.issued2014-07-01en_US
dc.date.issued1393-04-10fa_IR
dc.date.submitted2014-01-01en_US
dc.date.submitted1392-10-11fa_IR
dc.identifier.citationShakeri, E., Ghaemmaghami, Sh.. (2014). An extended feature set for blind image steganalysis in contourlet domain. The ISC International Journal of Information Security, 6(2), 169-181. doi: 10.22042/isecure.2014.6.2.6en_US
dc.identifier.issn2008-2045
dc.identifier.issn2008-3076
dc.identifier.urihttps://dx.doi.org/10.22042/isecure.2014.6.2.6
dc.identifier.urihttp://www.isecure-journal.com/article_39159.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/73419
dc.description.abstractThe aim of image steganalysis is to detect the presence of hidden messages in stego images. We propose a blind image steganalysis method in Contourlet domain and then show that the embedding process changes statistics of Contourlet coefficients. The suspicious image is transformed into Contourlet space, and then the statistics of Contourlet subbands coefficients are extracted as features. We use absolute Zernike moments and characteristic function moments of Contourlet subbands coefficients of the image to distinguish between the stego and non-stego images. Absolute Zernike moments are used to examine the randomness in the test image and characteristic function moments of Contourlet coefficients is used to form our feature set that can catch the changes made to the histogram of Contourlet coefficients. These features are fed to a nonlinear SVM classifier with an RBF kernel to distinguish between cover and stego images. We show that the embedding process distorts statistics of Contourlet coefficients, leading to detection of stego images. Experimental results confirm that the proposed features are highly sensitive to the change made by the embedding process. These results also reveal advantage of the proposed method over its counterpart steganalyzers, in cases of five popular JPEG steganography techniques.en_US
dc.format.extent842
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherIranian Society of Cryptologyen_US
dc.relation.ispartofThe ISC International Journal of Information Securityen_US
dc.relation.isversionofhttps://dx.doi.org/10.22042/isecure.2014.6.2.6
dc.subjectBlind Steganalysisen_US
dc.subjectContourlet Transformen_US
dc.subjectZernike Momentsen_US
dc.subjectCharacteristic Function Momentsen_US
dc.subjectstatistical analysisen_US
dc.titleAn extended feature set for blind image steganalysis in contourlet domainen_US
dc.typeTexten_US
dc.typeORIGINAL RESEARCH PAPERen_US
dc.citation.volume6
dc.citation.issue2
dc.citation.spage169
dc.citation.epage181


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد