نمایش مختصر رکورد

dc.contributor.authorRoostaee, S.en_US
dc.contributor.authorGhaffary, H.Ren_US
dc.date.accessioned1399-07-08T19:32:18Zfa_IR
dc.date.accessioned2020-09-29T19:32:18Z
dc.date.available1399-07-08T19:32:18Zfa_IR
dc.date.available2020-09-29T19:32:18Z
dc.date.issued2016-12-01en_US
dc.date.issued1395-09-11fa_IR
dc.date.submitted2016-08-27en_US
dc.date.submitted1395-06-06fa_IR
dc.identifier.citationRoostaee, S., Ghaffary, H.R. (2016). Diagnosis of Heart Disease Based on Meta Heuristic Algorithms and Clustering Methods. Journal of Electrical and Computer Engineering Innovations (JECEI), 4(2), 105-110. doi: 10.22061/jecei.2016.570en_US
dc.identifier.issn2322-3952
dc.identifier.issn2345-3044
dc.identifier.urihttps://dx.doi.org/10.22061/jecei.2016.570
dc.identifier.urihttp://jecei.sru.ac.ir/article_570.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/68816
dc.description.abstractData analysis in cardiovascular diseases is difficult due to large massive of information. All of features are not impressive in the final results. So it is very important to identify more effective features. In this study, the method of feature selection with binary cuckoo optimization algorithm is implemented to reduce property. According to the results, the most appropriate classification for support vector machine is featured diagnoses heart disease. The main purpose of this article is feature reduction and providing a more precise diagnosis of the disease. The proposed method is evaluated using three measures: accuracy, sensitivity and specificity. For comparison, a data set of Machine Learning Repository database including information about 303 people with 14 features was used. In addition to the high accuracy of current methods, are expensive and time-consuming. The results indicate that the proposed method is superior on other algorithms in terms of Performance, accuracy and run time.en_US
dc.format.extent830
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShahid Rajaee Teacher Training Universityen_US
dc.relation.ispartofJournal of Electrical and Computer Engineering Innovations (JECEI)en_US
dc.relation.isversionofhttps://dx.doi.org/10.22061/jecei.2016.570
dc.subjectHeart Diseaseen_US
dc.subjectSupport vector machineen_US
dc.subjectBinary Cuckoo Optimizationen_US
dc.subjectAlgorithmen_US
dc.subjectFeatures Selectionen_US
dc.titleDiagnosis of Heart Disease Based on Meta Heuristic Algorithms and Clustering Methodsen_US
dc.typeTexten_US
dc.typeOriginal Research Paperen_US
dc.contributor.departmentIslamic Azad University, Ferdows Branch, ferdows, Iran.en_US
dc.contributor.departmentIslamic Azad University, Ferdows Branch, ferdows, Iran.en_US
dc.citation.volume4
dc.citation.issue2
dc.citation.spage105
dc.citation.epage110


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد