نمایش مختصر رکورد

dc.contributor.authorOmidvar, R.en_US
dc.contributor.authorParvin, H.en_US
dc.contributor.authorEskandari, A.en_US
dc.date.accessioned1399-07-08T19:32:14Zfa_IR
dc.date.accessioned2020-09-29T19:32:14Z
dc.date.available1399-07-08T19:32:14Zfa_IR
dc.date.available2020-09-29T19:32:14Z
dc.date.issued2016-06-01en_US
dc.date.issued1395-03-12fa_IR
dc.date.submitted2016-07-23en_US
dc.date.submitted1395-05-02fa_IR
dc.identifier.citationOmidvar, R., Parvin, H., Eskandari, A.. (2016). A Clustering Approach by SSPCO Optimization Algorithm Based on Chaotic Initial Population. Journal of Electrical and Computer Engineering Innovations (JECEI), 4(1), 31-38. doi: 10.22061/jecei.2016.531en_US
dc.identifier.issn2322-3952
dc.identifier.issn2345-3044
dc.identifier.urihttps://dx.doi.org/10.22061/jecei.2016.531
dc.identifier.urihttp://jecei.sru.ac.ir/article_531.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/68792
dc.description.abstractAssigning a set of objects to groups such that objects in one group or cluster are more similar to each other than the other clusters' objects is the main task of clustering analysis. SSPCO optimization algorithm is a<br />new optimization algorithm that is inspired by the behavior of a type of bird called see-see partridge. One of the things that smart algorithms are applied to solve is the problem of clustering. Clustering is employed as a<br />powerful tool in many data mining applications, data analysis, and data compression in order to group data on the number of clusters (groups). In the present article, a chaotic SSPCO algorithm is utilized for clustering<br />data on different benchmarks and datasets; moreover, clustering with artificial bee colony algorithm and particle mass 9 clustering technique is compared. Clustering tests have been done on 13 datasets from UCI<br />machine learning repository. The results show that clustering SSPCO algorithm is a clustering technique which is very efficient in clustering multivariate data.en_US
dc.format.extent805
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShahid Rajaee Teacher Training Universityen_US
dc.relation.ispartofJournal of Electrical and Computer Engineering Innovations (JECEI)en_US
dc.relation.isversionofhttps://dx.doi.org/10.22061/jecei.2016.531
dc.subjectSSPCO algorithmen_US
dc.subjectChaoticen_US
dc.subjectClusteringen_US
dc.subjectInitial Populationen_US
dc.subjectData seten_US
dc.titleA Clustering Approach by SSPCO Optimization Algorithm Based on Chaotic Initial Populationen_US
dc.typeTexten_US
dc.contributor.departmentYoung Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iranen_US
dc.contributor.departmentYoung Researchers and Elite Club, Nourabad Mamasani Branch, Islamic Azad University, Nourabad Mamasani, Iranen_US
dc.contributor.departmentSama Technical and Vocational Training College, Azad University of Shiraz, Shiraz, Iranen_US
dc.citation.volume4
dc.citation.issue1
dc.citation.spage31
dc.citation.epage38


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد