نمایش مختصر رکورد

dc.contributor.authorFazlollahtabar, Hameden_US
dc.contributor.authorSaidi-Mehrabad, Mohammaen_US
dc.date.accessioned1399-07-08T19:02:52Zfa_IR
dc.date.accessioned2020-09-29T19:02:52Z
dc.date.available1399-07-08T19:02:52Zfa_IR
dc.date.available2020-09-29T19:02:52Z
dc.date.issued2016-03-01en_US
dc.date.issued1394-12-11fa_IR
dc.date.submitted2014-05-20en_US
dc.date.submitted1393-02-30fa_IR
dc.identifier.citationFazlollahtabar, Hamed, Saidi-Mehrabad, Mohamma. (2016). Monte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System. Journal of Optimization in Industrial Engineering, 9(19), 75-86. doi: 10.22094/joie.2016.190en_US
dc.identifier.issn2251-9904
dc.identifier.issn2423-3935
dc.identifier.urihttps://dx.doi.org/10.22094/joie.2016.190
dc.identifier.urihttp://www.qjie.ir/article_190.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/57887
dc.description.abstractWe compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobshop manufacturing system. The current methods for modeling reliability of a system involve determination of system state probabilities and transition states. Since, the failure of the machines and AGVs could be considered in different states, therefore a Markovian model is proposed for reliability assessment. The traditional Markovian computation is compared with a neural network methodology. Monte Carlo simulation has verified the neural network method having better performance for Markovian computations.<br />We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobshop manufacturing system. The current methods for modeling reliability of a system involve determination of system state probabilities and transition states. Since, the failure of the machines and AGVs could be considered in different states, therefore a Markovian model is proposed for reliability assessment.en_US
dc.format.extent1029
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherQIAUen_US
dc.relation.ispartofJournal of Optimization in Industrial Engineeringen_US
dc.relation.isversionofhttps://dx.doi.org/10.22094/joie.2016.190
dc.subjectReliability assessmenten_US
dc.subjectMarkovian modelen_US
dc.subjectNeural Networken_US
dc.subjectMonte Carlo simulationen_US
dc.subjectDesign of Experimenten_US
dc.titleMonte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing Systemen_US
dc.typeTexten_US
dc.typeOriginal Manuscripten_US
dc.contributor.departmentIran University of Science and Technologyen_US
dc.contributor.departmentIran University of Science and Technologyen_US
dc.citation.volume9
dc.citation.issue19
dc.citation.spage75
dc.citation.epage86


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد