نمایش مختصر رکورد

dc.contributor.authorBehboudi, M.en_US
dc.contributor.authorFarnoosh, R.en_US
dc.contributor.authorOghabian, M. A.en_US
dc.contributor.authorPezeshk, H.en_US
dc.date.accessioned1399-08-01T18:19:58Zfa_IR
dc.date.accessioned2020-10-22T18:19:58Z
dc.date.available1399-08-01T18:19:58Zfa_IR
dc.date.available2020-10-22T18:19:58Z
dc.date.issued2019-12-01en_US
dc.date.issued1398-09-10fa_IR
dc.date.submitted2018-06-15en_US
dc.date.submitted1397-03-25fa_IR
dc.identifier.citationBehboudi, M., Farnoosh, R., Oghabian, M. A., Pezeshk, H.. (2019). Evaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions. Journal of New Researches in Mathematics, 5(21), 85-92.en_US
dc.identifier.issn2588-588X
dc.identifier.urihttp://jnrm.srbiau.ac.ir/article_15159.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/453649
dc.description.abstractToday, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the dynamic conditional correlation model, to estimate the dynamic correlation between the two brain regions. Initially, the performance of these two models is evaluated using two new simulations. According to the results, in these simulation studies, the dynamic conditional correlation model has better performance than the exponential weighted moving average model. Therefore, a dynamic conditional correlation model is used to estimate the dynamic functional connectivity of two brain regions (the anterior cingulate cortex and the posterior cingulate cortex) for three Iranian addicted to methamphetamine in a resting state functional magnetic resonance imaging. The dynamic conditional correlation model has a good performance in assessing the dynamic functional connectivity of these addicted to methamphetamine. In addition, the dynamic functional connectivity varies between subjects.en_US
dc.format.extent490
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherScience and Research Branch, Islamic Azad Universityen_US
dc.publisherدانشگاه آزاد اسلامی واحد علوم و تحقیقاتfa_IR
dc.relation.ispartofJournal of New Researches in Mathematicsen_US
dc.relation.ispartofپژوهش های نوین در ریاضیfa_IR
dc.subjectDynamic functional connectivityen_US
dc.subjectFunctional magnetic resonance imagingen_US
dc.subjectExponential weighted moving average modelen_US
dc.subjectDynamic conditional correlation modelen_US
dc.titleEvaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regionsen_US
dc.typeTexten_US
dc.typeresearch paperen_US
dc.contributor.departmentDepartment of Statistics, Science and Research Branch, Islamic Azad University, Tehran, Iran.en_US
dc.contributor.departmentSchool of Mathematics, Iran University of Science and Technology, Tehran, Iran.en_US
dc.contributor.departmentDepartment of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.en_US
dc.contributor.departmentSchool of Mathematics, Statistics and Computer Science, University of Tehran, Iran.en_US
dc.citation.volume5
dc.citation.issue21
dc.citation.spage85
dc.citation.epage92


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد