نمایش مختصر رکورد

dc.date.accessioned1399-07-30T21:36:13Zfa_IR
dc.date.accessioned2020-10-21T21:36:13Z
dc.date.available1399-07-30T21:36:13Zfa_IR
dc.date.available2020-10-21T21:36:13Z
dc.date.issued2012-09-01en_US
dc.date.issued1391-06-11fa_IR
dc.date.submitted2015-08-05en_US
dc.date.submitted1394-05-14fa_IR
dc.identifier.citation(2012). Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design. Journal of Artificial Intelligence in Electrical Engineering, 1(2), 54-69.en_US
dc.identifier.issn2345-4652
dc.identifier.urihttp://jaiee.iau-ahar.ac.ir/article_513224.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/441060
dc.description.abstractThe main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrection<br />strategy supported by a recurrent neural network for finding a near optimal solution of a given<br />objective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimization<br />problems and some types of ANNs such as Hopfield network and Boltzmann machine have been applied in<br />combinatorial optimization problems. However, ANNs cannot optimize continuous functions and discrete<br />problems should be mapped into the neural networks architecture. To overcome these shortages, we introduce a<br />new procedure for stochastic optimization by a recurrent artificial neural network. The introduced neurooptimizer<br />(NO) starts with an initial solution and adjusts its weights by a new heuristic and unsupervised rule to<br />compute the best solution. Therefore, in each iteration, NO generates a new solution to reach the optimal or<br />near optimal solutions. For comparison and detailed description, the introduced NO is compared to genetic<br />algorithm and particle swarm optimization methods. Then, the proposed method is used to design the optimal<br />controller parameters for a five bar linkage manipulator robot. The important characteristics of NO are:<br />convergence to optimal or near optimal solutions, escaping from local minima, less function evaluation, high<br />convergence rate and easy to implement.en_US
dc.format.extent358
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherAhar Branch,Islamic Azad University, Ahar,Iranen_US
dc.relation.ispartofJournal of Artificial Intelligence in Electrical Engineeringen_US
dc.subjectnumerical optimizationen_US
dc.subjectNeural Networksen_US
dc.subjectObjective functionen_US
dc.subjectweight updatingen_US
dc.subjectfive bar linkage manipulator roboten_US
dc.titleNeuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Designen_US
dc.typeTexten_US
dc.citation.volume1
dc.citation.issue2
dc.citation.spage54
dc.citation.epage69


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد