نمایش مختصر رکورد

dc.contributor.authorPourrahimian, Parinazen_US
dc.date.accessioned1399-07-22T18:17:28Zfa_IR
dc.date.accessioned2020-10-13T18:17:29Z
dc.date.available1399-07-22T18:17:28Zfa_IR
dc.date.available2020-10-13T18:17:29Z
dc.date.issued2018-12-01en_US
dc.date.issued1397-09-10fa_IR
dc.date.submitted2020-10-07en_US
dc.date.submitted1399-07-16fa_IR
dc.identifier.citationPourrahimian, Parinaz. (2018). A new memetic algorithm for mitigating tandem automated guided vehicle system partitioning problem. Journal of Industrial Engineering, International, 14(4)en_US
dc.identifier.issn1735-5702
dc.identifier.issn2251-712X
dc.identifier.urihttp://jiei.azad.ac.ir/article_676834.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/434617
dc.description.abstractAutomated Guided Vehicle System (AGVS) provides the flexibility and automation demanded by Flexible Manufacturing System (FMS). However, with the growing concern on responsible management of resource use, it is crucial to manage these vehicles in an efficient way in order reduces travel time and controls conflicts and congestions. This paper presents the development process of a new Memetic Algorithm (MA) for optimizing partitioning problem of tandem AGVS. MAs employ a Genetic Algorithm (GA), as a global search, and apply a local search to bring the solutions to a local optimum point. A new Tabu Search (TS) has been developed and combined with a GA to refine the newly generated individuals by GA. The aim of the proposed algorithm is to minimize the maximum workload of the system. After all, the performance of the proposed algorithm is evaluated using Matlab. This study also compared the objective function of the proposed MA with GA. The results showed that the TS, as a local search, significantly improves the objective function of the GA for different system sizes with large and small numbers of zone by 1.26 in average.en_US
dc.format.extent828
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherIslamic Azad University, South Tehran Branchen_US
dc.relation.ispartofJournal of Industrial Engineering, Internationalen_US
dc.subjectAGVS . Tandem configuration . Tabu search . Memetic algorithm . Genetic algorithmen_US
dc.titleA new memetic algorithm for mitigating tandem automated guided vehicle system partitioning problemen_US
dc.typeTexten_US
dc.citation.volume14
dc.citation.issue4


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد