نمایش مختصر رکورد

dc.contributor.authorMiryekemami, Seyed Alirezaen_US
dc.contributor.authorSadeh, Ehsanen_US
dc.contributor.authorSabegh, Zeinolabedinen_US
dc.date.accessioned1399-07-09T12:29:10Zfa_IR
dc.date.accessioned2020-09-30T12:29:10Z
dc.date.available1399-07-09T12:29:10Zfa_IR
dc.date.available2020-09-30T12:29:10Z
dc.date.issued2017-12-01en_US
dc.date.issued1396-09-10fa_IR
dc.date.submitted2017-07-17en_US
dc.date.submitted1396-04-26fa_IR
dc.identifier.citationMiryekemami, Seyed Alireza, Sadeh, Ehsan, Sabegh, Zeinolabedin. (2017). Using Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange. Advances in Mathematical Finance and Applications, 2(4), 107-120. doi: 10.22034/amfa.2017.536271en_US
dc.identifier.issn2538-5569
dc.identifier.issn2645-4610
dc.identifier.urihttps://dx.doi.org/10.22034/amfa.2017.536271
dc.identifier.urihttp://amfa.iau-arak.ac.ir/article_536271.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/422960
dc.description.abstractInvestor decision making has always been affected by two factors: risk and returns. Considering risk, the investor expects an acceptable return on the investment decision horizon. Accordingly, defining goals and constraints for each investor can have unique prioritization. This paper develops several approaches to multi criteria portfolio optimization. The maximization of stock returns, the power of liquidity of selected stocks and the acceptance of risk to market risk are set as objectives of the problem. In order to solve the problem of information in the Tehran Stock Exchange in 2017, 45 sample stocks have been identified and, with the assumption of normalization of goals, a genetic algorithm has been used. The results show that the selected model provides a good performance for selecting the optimal portfolio for investors with specific goals and constraints.en_US
dc.format.extent690
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherIA University of Araken_US
dc.relation.ispartofAdvances in Mathematical Finance and Applicationsen_US
dc.relation.isversionofhttps://dx.doi.org/10.22034/amfa.2017.536271
dc.subjectPortfolio optimizationen_US
dc.subjectMulti criteria decision making Stochastic Programmingen_US
dc.subjectChance constrained compromiseen_US
dc.subjectGenetic Algorithmen_US
dc.titleUsing Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchangeen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentDepartment of Industrial management, Science and Research Branch, Islamic Azad University, Tehran, Iranen_US
dc.contributor.departmentDepartment of Management, Saveh Branch, Islamic Azad University, Saveh, Iranen_US
dc.contributor.departmentDepartment of Management, Saveh Branch, Islamic Azad University, Saveh, Iranen_US
dc.citation.volume2
dc.citation.issue4
dc.citation.spage107
dc.citation.epage120


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد