| dc.contributor.author | Dehghani-Zadeh, Fatemeh | en_US | 
| dc.date.accessioned | 1399-07-09T12:10:32Z | fa_IR | 
| dc.date.accessioned | 2020-09-30T12:10:33Z |  | 
| dc.date.available | 1399-07-09T12:10:32Z | fa_IR | 
| dc.date.available | 2020-09-30T12:10:33Z |  | 
| dc.date.issued | 2020-02-01 | en_US | 
| dc.date.issued | 1398-11-12 | fa_IR | 
| dc.date.submitted | 2018-04-27 | en_US | 
| dc.date.submitted | 1397-02-07 | fa_IR | 
| dc.identifier.citation | Dehghani-Zadeh, Fatemeh. (2020). Finiteness of certain local cohomology modules. Algebraic Structures and Their Applications, 7(1), 29-40. doi: 10.29252/as.2020.1683 | en_US | 
| dc.identifier.issn | 2382-9761 |  | 
| dc.identifier.issn | 2423-3447 |  | 
| dc.identifier.uri | https://dx.doi.org/10.29252/as.2020.1683 |  | 
| dc.identifier.uri | http://as.yazd.ac.ir/article_1683.html |  | 
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/416799 |  | 
| dc.description.abstract | Cofiniteness of the generalized local cohomology modules <br />$H^{i}_{mathfrak{a}}(M,N)$ of two $R$-modules $M$ and $N$ with<br />respect to an ideal $mathfrak{a}$ is studied for some $i^{,}s$ with<br />a specified property. Furthermore, Artinianness of<br />$H^{j}_{mathfrak{b}_{0}}(H_{mathfrak{a}}^{i}(M,N))$ is<br />investigated by using the above result, in certain graded situations, where $mathfrak{b}_{0}$ is an ideal of $R_{0}$ and<br />$mathfrak{a}=mathfrak{a}_{0}+R_{+}$ such that<br />$mathfrak{b}_{0}+mathfrak{a}_{0}$ is an  $mathfrak{m}_{0}$-primary ideal. | en_US | 
| dc.format.extent | 309 |  | 
| dc.format.mimetype | application/pdf |  | 
| dc.language | English |  | 
| dc.language.iso | en_US |  | 
| dc.publisher | Yazd University | en_US | 
| dc.relation.ispartof | Algebraic Structures and Their Applications | en_US | 
| dc.relation.isversionof | https://dx.doi.org/10.29252/as.2020.1683 |  | 
| dc.subject | Local cohomology | en_US | 
| dc.subject | Finiteness | en_US | 
| dc.subject | Serre subcategory | en_US | 
| dc.title | Finiteness of certain local cohomology modules | en_US | 
| dc.type | Text | en_US | 
| dc.type | Research Paper | en_US | 
| dc.contributor.department | Department of mathematics, Islamic Azad University Yazd Branch, Yazd, Iran. | en_US | 
| dc.citation.volume | 7 |  | 
| dc.citation.issue | 1 |  | 
| dc.citation.spage | 29 |  | 
| dc.citation.epage | 40 |  |