نمایش مختصر رکورد

dc.contributor.authorAbedi, E.en_US
dc.contributor.authorIlmakchi, M.en_US
dc.date.accessioned1399-07-09T12:03:17Zfa_IR
dc.date.accessioned2020-09-30T12:03:18Z
dc.date.available1399-07-09T12:03:17Zfa_IR
dc.date.available2020-09-30T12:03:18Z
dc.date.issued2015-10-01en_US
dc.date.issued1394-07-09fa_IR
dc.date.submitted2012-09-18en_US
dc.date.submitted1391-06-28fa_IR
dc.identifier.citationAbedi, E., Ilmakchi, M.. (2015). Hypersurfaces of a Sasakian space form with recurrent shape operator. Bulletin of the Iranian Mathematical Society, 41(5), 1287-1297.en_US
dc.identifier.issn1017-060X
dc.identifier.issn1735-8515
dc.identifier.urihttp://bims.iranjournals.ir/article_691.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/414414
dc.description.abstractLet $(M^{2n},g)$ be a real hypersurface with recurrent shape<br />operator and tangent to the structure vector field $xi$ of the Sasakian space form<br />$widetilde{M}(c)$. We show that if the shape operator $A$ of $M$ is<br />recurrent then it is parallel. Moreover, we show that $M$<br />is locally a product of two constant $phi-$sectional curvature<br />spaces.en_US
dc.format.extent130
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherSpringer and the Iranian Mathematical Society (IMS)en_US
dc.relation.ispartofBulletin of the Iranian Mathematical Societyen_US
dc.subjectRecurrent hypersurfaces‎en_US
dc.subject‎Sasakian manifold‎en_US
dc.subject53-XX Differential geometryen_US
dc.titleHypersurfaces of a Sasakian space form with recurrent shape operatoren_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentDepartment of‎ ‎Mathematics‎, ‎Azarbaijan Shahid Madani University‎, ‎P.O‎. ‎Box 53751 71379‎, ‎Tabriz‎, ‎Iranen_US
dc.contributor.departmentDepartment of‎ ‎Mathematics‎, ‎Azarbaijan Shahid Madani University‎, ‎P.O‎. ‎Box 53751 71379‎, ‎Tabriz‎, ‎Iranen_US
dc.citation.volume41
dc.citation.issue5
dc.citation.spage1287
dc.citation.epage1297


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد