| dc.contributor.author | Deng, Y. H. | en_US |
| dc.date.accessioned | 1399-07-09T12:02:53Z | fa_IR |
| dc.date.accessioned | 2020-09-30T12:02:53Z | |
| dc.date.available | 1399-07-09T12:02:53Z | fa_IR |
| dc.date.available | 2020-09-30T12:02:53Z | |
| dc.date.issued | 2014-10-01 | en_US |
| dc.date.issued | 1393-07-09 | fa_IR |
| dc.date.submitted | 2013-02-08 | en_US |
| dc.date.submitted | 1391-11-20 | fa_IR |
| dc.identifier.citation | Deng, Y. H.. (2014). Existence of a ground state solution for a class of $p$-laplace equations. Bulletin of the Iranian Mathematical Society, 40(5), 1087-1095. | en_US |
| dc.identifier.issn | 1017-060X | |
| dc.identifier.issn | 1735-8515 | |
| dc.identifier.uri | http://bims.iranjournals.ir/article_554.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/414277 | |
| dc.description.abstract | According to a class of constrained
minimization problems, the Schwartz symmetrization process and the
compactness lemma of Strauss, we prove that there is a
nontrivial ground state solution for a class of $p$-Laplace
equations without the Ambrosetti-Rabinowitz condition. | en_US |
| dc.format.extent | 112 | |
| dc.format.mimetype | application/pdf | |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | Springer and the Iranian Mathematical Society (IMS) | en_US |
| dc.relation.ispartof | Bulletin of the Iranian Mathematical Society | en_US |
| dc.subject | Ground state solution | en_US |
| dc.subject | $p$-Laplace equation | en_US |
| dc.subject | minimization problem | en_US |
| dc.subject | the Schwartz symmetrization process | en_US |
| dc.subject | 35-XX Partial differential equations | en_US |
| dc.title | Existence of a ground state solution for a class of $p$-laplace equations | en_US |
| dc.type | Text | en_US |
| dc.type | Research Paper | en_US |
| dc.contributor.department | Department of Hengyang normal university | en_US |
| dc.citation.volume | 40 | |
| dc.citation.issue | 5 | |
| dc.citation.spage | 1087 | |
| dc.citation.epage | 1095 | |