نمایش مختصر رکورد

dc.contributor.authorYon, Y.en_US
dc.contributor.authorKim, K.en_US
dc.date.accessioned1399-07-09T12:02:13Zfa_IR
dc.date.accessioned2020-09-30T12:02:13Z
dc.date.available1399-07-09T12:02:13Zfa_IR
dc.date.available2020-09-30T12:02:13Z
dc.date.issued2012-04-01en_US
dc.date.issued1391-01-13fa_IR
dc.date.submitted2009-04-30en_US
dc.date.submitted1388-02-10fa_IR
dc.identifier.citationYon, Y., Kim, K.. (2012). On Heyting algebras and dual BCK-algebras. Bulletin of the Iranian Mathematical Society, 38(1), 159-168.en_US
dc.identifier.issn1017-060X
dc.identifier.issn1735-8515
dc.identifier.urihttp://bims.iranjournals.ir/article_397.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/414050
dc.description.abstractA Heyting algebra is a distributive lattice with implication and a dual $BCK$-algebra is an algebraic system having as models logical systems equipped with implication. The aim of this paper is to investigate the relation of Heyting algebras between dual $BCK$-algebras. We define notions of $i$-invariant and $m$-invariant on dual $BCK$-semilattices and prove that a Heyting semilattice is equivalent to an $i$-invariant and $m$-invariant dual $BCK$-semilattices, and show that a commutative Heyting algebra is equivalent to a bounded implicative dual $BCK$-algebra.en_US
dc.format.extent180
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherSpringer and the Iranian Mathematical Society (IMS)en_US
dc.relation.ispartofBulletin of the Iranian Mathematical Societyen_US
dc.subjectHeyting semilatticeen_US
dc.subjectHeyting algebraen_US
dc.subjectdual $BCK$-algebraen_US
dc.titleOn Heyting algebras and dual BCK-algebrasen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentMokwon Universityen_US
dc.contributor.departmentChungju National Universityen_US
dc.citation.volume38
dc.citation.issue1
dc.citation.spage159
dc.citation.epage168


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد