نمایش مختصر رکورد

dc.contributor.authorNayebi, A.en_US
dc.date.accessioned1399-07-09T12:02:09Zfa_IR
dc.date.accessioned2020-09-30T12:02:09Z
dc.date.available1399-07-09T12:02:09Zfa_IR
dc.date.available2020-09-30T12:02:09Z
dc.date.issued2011-12-01en_US
dc.date.issued1390-09-10fa_IR
dc.date.submitted2010-01-16en_US
dc.date.submitted1388-10-26fa_IR
dc.identifier.citationNayebi, A.. (2011). Upper bounds on the solutions to n = p+m^2. Bulletin of the Iranian Mathematical Society, 37(4), 95-108.en_US
dc.identifier.issn1017-060X
dc.identifier.issn1735-8515
dc.identifier.urihttp://bims.iranjournals.ir/article_373.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/414027
dc.description.abstractardy and Littlewood conjectured that every large integer $n$ that is not a square is the sum of a prime and a square. They believed that the number $mathcal{R}(n)$ of such representations for $n = p+m^2$ is asymptotically given by <br />begin{equation*} <br />mathcal{R}(n) sim frac{sqrt{n}}{log n}prod_{p=3}^{infty}left(1-frac{1}{p-1}left(frac{n}{p}right)right), <br />end{equation*} <br />where $p$ is a prime, $m$ is an integer, and $left(frac{n}{p}right)$ denotes the Legendre symbol. Unfortunately, as we will later point out, this conjecture is difficult to prove and not emph{all} integers that are nonsquares can be represented as the sum of a prime and a square. Instead in this paper we prove two upper bounds for $mathcal{R}(n)$ for $n le N$. The first upper bound applies to emph{all} $n le N$. The second upper bound depends on the possible existence of the Siegel zero, and assumes its existence, and applies to all $N/2 < n le N$ but at most $ll N^{1-delta_1}$ of these integers, where $N$ is a sufficiently large positive integer and $0en_US
dc.format.extent241
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherSpringer and the Iranian Mathematical Society (IMS)en_US
dc.relation.ispartofBulletin of the Iranian Mathematical Societyen_US
dc.subjectAdditiveen_US
dc.subjectConjecture Hen_US
dc.subjectcircle methoden_US
dc.titleUpper bounds on the solutions to n = p+m^2en_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.citation.volume37
dc.citation.issue4
dc.citation.spage95
dc.citation.epage108


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد