نمایش مختصر رکورد

dc.contributor.authorLarki, H.en_US
dc.contributor.authorRiazi, A.en_US
dc.date.accessioned1399-07-09T12:02:04Zfa_IR
dc.date.accessioned2020-09-30T12:02:04Z
dc.date.available1399-07-09T12:02:04Zfa_IR
dc.date.available2020-09-30T12:02:04Z
dc.date.issued2013-03-01en_US
dc.date.issued1391-12-11fa_IR
dc.date.submitted2011-04-26en_US
dc.date.submitted1390-02-06fa_IR
dc.identifier.citationLarki, H., Riazi, A.. (2013). On the relations between the point spectrum of A and invertibility of I + f(A)B. Bulletin of the Iranian Mathematical Society, 39(1), 97-106.en_US
dc.identifier.issn1017-060X
dc.identifier.issn1735-8515
dc.identifier.urihttp://bims.iranjournals.ir/article_239.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/413992
dc.description.abstractLet A be a bounded linear operator on a Banach space X. We <br />investigate the conditions of existing rank-one operator B such that I+f(A)B is invertible for every analytic function <br />f on sigma(A). Also we compare the invariant subspaces of f(A)B and B. This work is motivated by an <br />operator method on the Banach space ell^2 for solving some PDEs which is extended to general operator space under some <br />conditions in this paper.en_US
dc.format.extent259
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherSpringer and the Iranian Mathematical Society (IMS)en_US
dc.relation.ispartofBulletin of the Iranian Mathematical Societyen_US
dc.subjectpoint spectrumen_US
dc.subjectrank-one operatoren_US
dc.subjectinvariant subspacesen_US
dc.subject47-XX Operator theoryen_US
dc.titleOn the relations between the point spectrum of A and invertibility of I + f(A)Ben_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentIslamic Azad University, Parand Branchen_US
dc.contributor.departmentAmirkabir University of Technologyen_US
dc.citation.volume39
dc.citation.issue1
dc.citation.spage97
dc.citation.epage106


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد