نمایش مختصر رکورد

dc.contributor.authorKhanduzi, F.en_US
dc.contributor.authorParizanganeh, A.en_US
dc.contributor.authorZamani, A.en_US
dc.date.accessioned1399-07-09T11:46:38Zfa_IR
dc.date.accessioned2020-09-30T11:46:38Z
dc.date.available1399-07-09T11:46:38Zfa_IR
dc.date.available2020-09-30T11:46:38Z
dc.date.issued2015-12-01en_US
dc.date.issued1394-09-10fa_IR
dc.date.submitted2015-03-01en_US
dc.date.submitted1393-12-10fa_IR
dc.identifier.citationKhanduzi, F., Parizanganeh, A., Zamani, A.. (2015). Application of multivariate statistics and geostatistical techniques to identify the spatial variability of heavy metals in groundwater resources. Caspian Journal of Environmental Sciences, 13(4), 333-347.en_US
dc.identifier.issn1735-3033
dc.identifier.issn1735-3866
dc.identifier.urihttps://cjes.guilan.ac.ir/article_1546.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/408874
dc.description.abstractThe performance of geostatistical and spatial interpolation techniques for estimation of spatial variability of heavy metals and water quality mapping of groundwater resources in Ramiyan district (Golestan province- Iran) were investigated. 24 spring/well water samples were collected and the concentration of heavy metals (Ni, Co, Pb, Cd and Cu) was determined using Differential Pulse Polarography. Multivariate and geostatistical methods have been applied to differentiate the influences of natural processes and human activities as to the pollution of heavy metals in groundwater across the study area. The results of the Cluster Analysis and Factor Analysis show that Ni and Co are grouped in the factor F1, whereas, Pb and Cd in F2 and Zn and Cu in F3. The probability of presence of elevated levels for the three factors was predicted by utilizing the most appropriate Variogram Model, whilst the performance of methods, was evaluated by using Mean Absolute Error, Mean Bias Error and Root Mean Square Error. The spatial structure results show that the variograms and cross-validation of the six variables can be modeled with three methods, namely,the Radial Basis Fraction, Inverse Distance Weight and Ordinary Kriging. Moreover, results illustrated that Radial Basis Fraction method was the best as it had the highest precision and lowest error. The Geographic Information System can fully display spatial patterns of heavy metal concentrations, in groundwater resources of the study area.en_US
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Guilanen_US
dc.relation.ispartofCaspian Journal of Environmental Sciencesen_US
dc.subjectGroundwater resourcesen_US
dc.subjectHeavy metals contaminationen_US
dc.subjectGeostatisticalen_US
dc.subjectMultivariate statisticsen_US
dc.subjectInterpolationen_US
dc.subjectSpatial mappingen_US
dc.titleApplication of multivariate statistics and geostatistical techniques to identify the spatial variability of heavy metals in groundwater resourcesen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentUniversity of Zanjanen_US
dc.contributor.departmentUniversity of Zanjanen_US
dc.contributor.departmentUniversity of Zanjanen_US
dc.citation.volume13
dc.citation.issue4
dc.citation.spage333
dc.citation.epage347


فایل‌های این مورد

فایل‌هااندازهقالبمشاهده

فایلی با این مورد مرتبط نشده است.

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد