نمایش مختصر رکورد

dc.contributor.authorPir Mohammadiani, Rojiaren_US
dc.date.accessioned1399-07-09T11:39:35Zfa_IR
dc.date.accessioned2020-09-30T11:39:35Z
dc.date.available1399-07-09T11:39:35Zfa_IR
dc.date.available2020-09-30T11:39:35Z
dc.date.issued2019-08-01en_US
dc.date.issued1398-05-10fa_IR
dc.date.submitted2019-06-26en_US
dc.date.submitted1398-04-05fa_IR
dc.identifier.citationPir Mohammadiani, Rojiar. (2019). Using AHP to complex network analysis tools selection. Computational Methods for Differential Equations, 7(4), 635-645.en_US
dc.identifier.issn2345-3982
dc.identifier.issn2383-2533
dc.identifier.urihttps://cmde.tabrizu.ac.ir/article_9221.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/406521
dc.description.abstractThe analysis of complex networks become more popular through the easily access of huge network data resources in the last years. Researchers have developed techniques and models to help understanding and predicting the behaviour of complex network systems. This advanced analysis is not possible without proper softwares and tools. A large number of tools are available with specific features for analysing and visualizing network systems and we can use a software or a set of suitable tools based on these features and capabilities for the project. Understanding the features of tools and softwares help to achieve better results from network analysis. In this paper, first we review the structure of different types of networks. Based on Wenjun paper, the complex networks are divided into four categories: information networks; social networks; Biological networks and Technological networks [23]. Then we define some functional indicators including: Basic Functionalities, Graph type Support, File Formats Support, Indicator Supports, Visualization Layouts Support, and Community Detection Support. In the next step, by using analytic hierarchical processing (AHP) and truly definable criteria try to evaluate main complex network analysis (CNA) softwares. Eventually, an opportunity is provided using AHP to identify, understand, and evaluate completely four main CNA softwares objectively before identifying and selecting the most efficient CNA software.en_US
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Tabrizen_US
dc.relation.ispartofComputational Methods for Differential Equationsen_US
dc.subjectComplex network analysisen_US
dc.subjectAnalysis hierarchical processingen_US
dc.subjectComplex network toolsen_US
dc.titleUsing AHP to complex network analysis tools selectionen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentDepartment of Computer Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iranen_US
dc.citation.volume7
dc.citation.issue4
dc.citation.spage635
dc.citation.epage645


فایل‌های این مورد

فایل‌هااندازهقالبمشاهده

فایلی با این مورد مرتبط نشده است.

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد