| dc.contributor.author | Dutta, Sanghita | en_US | 
| dc.contributor.author | Lanong, Chanlemki | en_US | 
| dc.date.accessioned | 1399-07-09T11:37:14Z | fa_IR | 
| dc.date.accessioned | 2020-09-30T11:37:14Z |  | 
| dc.date.available | 1399-07-09T11:37:14Z | fa_IR | 
| dc.date.available | 2020-09-30T11:37:14Z |  | 
| dc.date.issued | 2017-03-01 | en_US | 
| dc.date.issued | 1395-12-11 | fa_IR | 
| dc.date.submitted | 2015-07-02 | en_US | 
| dc.date.submitted | 1394-04-11 | fa_IR | 
| dc.identifier.citation | Dutta, Sanghita, Lanong, Chanlemki. (2017). On annihilator graph of a finite commutative ring. Transactions on Combinatorics, 6(1), 1-11. doi: 10.22108/toc.2017.20360 | en_US | 
| dc.identifier.issn | 2251-8657 |  | 
| dc.identifier.issn | 2251-8665 |  | 
| dc.identifier.uri | https://dx.doi.org/10.22108/toc.2017.20360 |  | 
| dc.identifier.uri | http://toc.ui.ac.ir/article_20360.html |  | 
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/405731 |  | 
| dc.description.abstract | The annihilator graph $AG(R)$ of a commutative ring $R$ is a simple undirected graph with the vertex set $Z(R)^*$ and two distinct vertices are adjacent if and only if $ann(x) cup ann(y)$ $ neq $ $ann(xy)$. In this paper we give the sufficient condition for a graph $AG(R)$ to be complete. We characterize rings for which $AG(R)$ is a regular graph, we show that $gamma (AG(R))in {1,2}$ and we also characterize the rings for which $AG(R)$ has a cut vertex. Finally we find the clique number of a finite reduced ring and characterize the rings for which $AG(R)$ is a planar graph. | en_US | 
| dc.format.extent | 249 |  | 
| dc.format.mimetype | application/pdf |  | 
| dc.language | English |  | 
| dc.language.iso | en_US |  | 
| dc.publisher | University of Isfahan | en_US | 
| dc.relation.ispartof | Transactions on Combinatorics | en_US | 
| dc.relation.isversionof | https://dx.doi.org/10.22108/toc.2017.20360 |  | 
| dc.subject | Annihilator | en_US | 
| dc.subject | Clique number | en_US | 
| dc.subject | Domination Number | en_US | 
| dc.subject | 05C10 Planar graphs; geometric and topological aspects of graph theory | en_US | 
| dc.title | On annihilator graph of a finite commutative ring | en_US | 
| dc.type | Text | en_US | 
| dc.type | Research Paper | en_US | 
| dc.contributor.department | North eastern Hill University | en_US | 
| dc.contributor.department | North Eastern Hill University | en_US | 
| dc.citation.volume | 6 |  | 
| dc.citation.issue | 1 |  | 
| dc.citation.spage | 1 |  | 
| dc.citation.epage | 11 |  |