نمایش مختصر رکورد

dc.contributor.authorAcharya, Muktien_US
dc.contributor.authorJain, Rashmien_US
dc.contributor.authorKansal, Sangitaen_US
dc.date.accessioned1399-07-09T11:37:12Zfa_IR
dc.date.accessioned2020-09-30T11:37:12Z
dc.date.available1399-07-09T11:37:12Zfa_IR
dc.date.available2020-09-30T11:37:12Z
dc.date.issued2016-03-01en_US
dc.date.issued1394-12-11fa_IR
dc.date.submitted2013-09-29en_US
dc.date.submitted1392-07-07fa_IR
dc.identifier.citationAcharya, Mukti, Jain, Rashmi, Kansal, Sangita. (2016). ON $bullet$-LICT signed graohs $L_{bullet_c}(S)$ and $bullet$-LINE signed graohs $L_bullet(S)$. Transactions on Combinatorics, 5(1), 37-48. doi: 10.22108/toc.2016.7890en_US
dc.identifier.issn2251-8657
dc.identifier.issn2251-8665
dc.identifier.urihttps://dx.doi.org/10.22108/toc.2016.7890
dc.identifier.urihttp://toc.ui.ac.ir/article_7890.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/405719
dc.description.abstractA <em>signed graph</em> (or‎, ‎in short‎, <em>sigraph</em>) $S=(S^u,sigma)$ consists of an underlying graph $S^u‎ :‎=G=(V,E)$ and a function $sigma:E(S^u)longrightarrow {+,-}$‎, ‎called the signature of $S$‎. ‎A <em>marking</em> of $S$ is a function $mu:V(S)longrightarrow {+,-}$‎. ‎The <em>canonical marking</em> of a signed graph $S$‎, ‎denoted $mu_sigma$‎, ‎is given as $$mu_sigma(v)‎ :‎= prod_{vwin E(S)}sigma(vw).$$‎ <br />‎The <em>line graph</em> of a graph $G$‎, ‎denoted $L(G)$‎, ‎is the graph in which edges of $G$ are represented as vertices‎, ‎two of these vertices are adjacent if the corresponding edges are adjacent in $G$‎. ‎There are three notions of a <em>line signed graph</em> of a signed graph $S=(S^u,sigma)$ in the literature‎, ‎viz.‎, ‎$L(S)$‎, ‎$L_times(S)$ and $L_bullet(S)$‎, ‎all of which have $L(S^u)$ as their underlying graph; only the rule to assign signs to the edges of $L(S^u)$ differ‎. ‎Every edge $ee'$ in $L(S)$ is negative whenever both the adjacent edges $e$ and $e'$ in S are negative‎, ‎an edge $ee'$ in $L_times(S)$ has the product $sigma(e)sigma(e')$ as its sign and an edge $ee'$ in $L_bullet(S)$ has $mu_sigma(v)$ as its sign‎, ‎where $vin V(S)$ is a common vertex of edges $e$ and $e'$‎. <br />‎<br />‎The line-cut graph (or‎, ‎in short‎, <em>lict graph</em>) of a graph $G=(V,E)$‎, ‎denoted by $L_c(G)$‎, ‎is the graph with vertex set $E(G)cup C(G)$‎, ‎where $C(G)$ is the set of cut-vertices of $G$‎, ‎in which two vertices are adjacent if and only if they correspond to adjacent edges of $G$ or one vertex corresponds to an edge $e$ of $G$ and the other vertex corresponds to a cut-vertex $c$ of $G$ such that $e$ is incident with $c$‎. <br />‎<br />‎In this paper‎, ‎we introduce <em>dot-lict signed graph</em> (or $bullet$<em>-lict signed graph</em>} $L_{bullet_c}(S)$‎, ‎which has $L_c(S^u)$ as its underlying graph‎. ‎Every edge $uv$ in $L_{bullet_c}(S)$ has the sign $mu_sigma(p)$‎, ‎if $u‎, ‎v in E(S)$ and $pin V(S)$ is a common vertex of these edges‎, ‎and it has the sign $mu_sigma(v)$‎, ‎if $uin E(S)$ and $vin C(S)$‎. ‎we characterize signed graphs on $K_p$‎, ‎$pgeq2$‎, ‎on cycle $C_n$ and on $K_{m,n}$ which are $bullet$-lict signed graphs or $bullet$-line signed graphs‎, ‎characterize signed graphs $S$ so that $L_{bullet_c}(S)$ and $L_bullet(S)$ are balanced‎. ‎We also establish the characterization of signed graphs $S$ for which $Ssim L_{bullet_c}(S)$‎, ‎$Ssim L_bullet(S)$‎, ‎$eta(S)sim L_{bullet_c}(S)$ and $eta(S)sim L_bullet(S)$‎, ‎here $eta(S)$ is negation of $S$ and $sim$ stands for switching equivalence‎.en_US
dc.format.extent300
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Isfahanen_US
dc.relation.ispartofTransactions on Combinatoricsen_US
dc.relation.isversionofhttps://dx.doi.org/10.22108/toc.2016.7890
dc.subject‎Signed graph‎en_US
dc.subject‎Balance‎en_US
dc.subject‎Switching‎en_US
dc.subject‎$bullet$-line signed graph‎en_US
dc.subject‎$bullet$-lict signed graphen_US
dc.subject05C22 Signed and weighted graphsen_US
dc.subject05C75 Structural characterization of families of graphsen_US
dc.titleON $bullet$-LICT signed graohs $L_{bullet_c}(S)$ and $bullet$-LINE signed graohs $L_bullet(S)$en_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentDELHI TECHNOLOGICAL UNIVERSITY, DELHI - INDIAen_US
dc.contributor.departmentDELHI TECHNOLOGICAL UNIVERSITY, DELHI - INDIAen_US
dc.contributor.departmentDELHI TECHNOLOGICAL UNIVERSITY, DELHI - INDIAen_US
dc.citation.volume5
dc.citation.issue1
dc.citation.spage37
dc.citation.epage48


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد